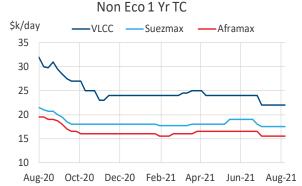


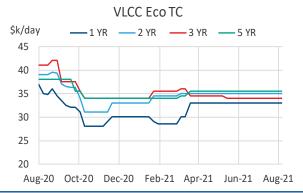
Weekly Tanker Market Report

Week 34

Published: 27 August 2021


Contents	Page
Time Charter Assessments	2 - 4
Recent Period Fixtures	5
Spot Earnings	6 - 8
Dirty Wet FFAs	9
Clean Wet FFAs	10 - 11
FFA Comments	12
LPG Market	13
Prices and Indices	14

Uncoated Tankers

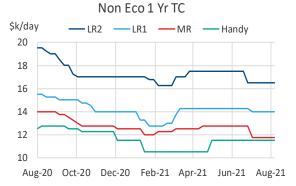

Timecharter assessments - crude

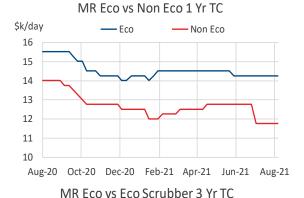
		1 Y	r	2 Yı	r	3 Yı	r	5 Yr	1
	Vessel	TC	Δ	TC	Δ	TC	Δ	TC	Δ
	Non Eco	22,000	-	26,000	-	28,000	-		
VLCC	Eco	33,000	-	35,000	-	34,000	-	35,500	-
	Eco scrubber					36,000	-	37,500	-
	Non Eco	17,500	-	20,000	-	22,000	-		
Suezmax	Eco	21,000	-	24,000	-	25,000	-	26,500	-
	Eco scrubber					27,000	-	27,500	-
	Non Eco	15,500	-	17,500	-	19,500	-		
Aframax	Eco	18,500	-	20,500	-	21,500	-	23,000	-
	Eco scrubber					23,500	-	24,000	-

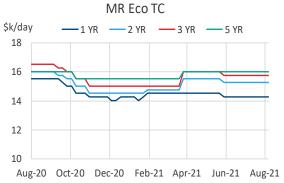
VLCC Eco vs Non Eco 1 Yr TC

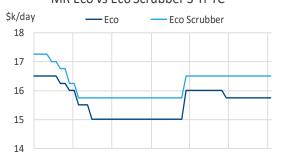
As the summer starts to draw to a close this week, we have seen several owners announcing quarterly results which have made for uncomfortable reading. The realities of the spot and period markets are a sobering reminder of the cyclical nature of the shipping market. Owners hopes of a Q4 supply/demand surge and market recovery are starting to look shaky with further lockdowns and travel restrictions still preventing meaningful return to 'normality'.

The crude period market has been reflecting this with an oil major reported to have extended a time charter on an older generation Aframax at around USD 7,500 per day for a short 1-3 month period. Charterers continue to look for flexibility in period deals with optionality being key as they try to assess when the market will finally improve. Owners therefore remain hesitant in putting ships out on longer periods as they do not want to miss an opportunity to increase period rates.


An uptick in product tanker sentiment in the East is lending support to owners hopes that this may spill over into the crude tanker segment and we have seen an eco Aframax reportedly taken for 2 years at USD 22,000 per day, however these diamonds in the rough are few and far between. We will need to see continued and sustained spot activity, demand increase and a significant improvement in spot rates before the period market starts to recover. For many owners this simply cannot come soon enough.




Coated Tankers


Timecharter assessments - clean

		1 Yı	r	2 Yr		3 Yr		5 Yr	
	Vessel	TC	?	TC	?	TC	?	TC	?
	Non Eco	16,500	-	19,500	-	20,500	-		
LR2	Eco	18,500	-	23,000	-	24,000	-	24,750	-
	Eco scrubber					25,250	-	26,000	-
	Non Eco	14,000	-	15,500	-	16,000	-		
LR1	Eco	15,000	-	16,500	-	17,000	-	17,000	-
	Eco scrubber					17,750	-	17,750	-
	Non Eco	11,750	-	13,000	-	14,000	-		
MR	Eco	14,250	-	15,250	-	15,750	-	16,000	-
	Eco scrubber					16,500	-	16,500	-
Handy	Non Eco	11,500	-	12,500	-	13,000	-		

Aug-20 Oct-20 Dec-20 Feb-21 Apr-21 Jun-21 Aug-21

Only one short term MR fixture to report this week as the market continues to struggle to see fixing activity. Again, as said for several weeks and months, with slow signs of improvement regarding a vaccine roll out across the world and talk of market pick ups in Q4/Q1 from some sources owners are becoming increasingly reluctant to put out tonnage on time charter. They are still willing to look at the shorter 30-90 days or alternatively the longer periods of 2 years or so +. That said, demand for such long periods from charterers is hard to come by, whilst owners are usually factoring in a market pick up into their rate ideas, meaning the bid/offer spread on these periods is also difficult to bridge. That said, the spot rates in the LR's have sustained, providing a useful platform for TC to occur, whilst spot rates in the East on the MRs are also solid. With the west still weak across the board, redelivery options may be a point for debate if one

were to get that far in negotiations at this time, particularly on the shorter term deals.

Time Charter

Braemar ACM Tanker Weekly 27 August 2021 | Week 34

Time charter forward curve

		1 Yr		2 Yr		3 Yr		4 Yr		5 Yr	
Vessel		TC	?								
VLCC	Non Eco	22,000	-	30,000	-	32,000	-				
VLCC	Eco	33,000	-	37,000	-	32,000	-	37,000	-	38,500	-
Cuarman	Non Eco	17,500	-	22,500	-	26,000	-				
Suezmax	Eco	21,000	-	27,000	-	27,000	-	28,000	-	29,500	-
Aframax	Non Eco	15,500	-	19,500	-	23,500	-				
Airamax	Eco	18,500	-	22,500	-	23,500	-	24,500	-	26,000	-
LR2	Non Eco	16,500	-	22,500	-	22,500	-				
LNZ	Eco	18,500	-	27,500	-	26,000	-	25,500	-	26,250	-
104	Non Eco	14,000	-	17,000	-	17,000	-				
LR1	Eco	15,000	-	18,000	-	18,000	-	17,000	-	17,000	-
MR	Non Eco	11,750	-	14,250	-	16,000	-				
IVIN	Eco	14,250	-	16,250	-	16,750	-	16,250	-	16,500	-
Handy	Non Eco	11,500	-	13,500	-	14,000	-				

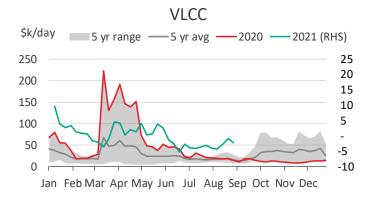
Explanation: if a Suezmax is fixed for a two year TC at a two year rate of \$31k and sub-let during year one at a one year rate of \$37k, then only \$25k is needed in year two to break-even over the two years. So year one is \$37k, year two is \$25k. If the three year rate is \$26k, this means that \$16k is needed in year three to break even on a three year TC where year one was \$37k and year two was \$25k. And so on.

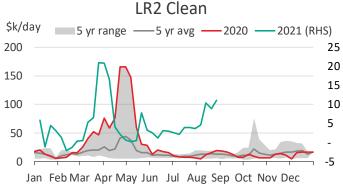
Period Fixtures

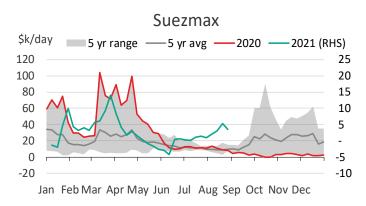
Charterer	Vessel	DWT	Build	Period	Rate	Laycan
UNIPEC	NAVE ELECTRON	309	2021	60-120 DAYS	RNR	AUG
BP (SUBS)	BESIKTAS BOSPHORUS	163	2005	PNR	RNR	AUG
CNR	EAGLE BARCELONA	113	2018	24 MOS	\$22,000	SEPT
ΓΕΕΚΑΥ	AQUALEGEND/AQUALEADER	115	2011	24+12 MOS	\$18,000/\$21,000	Q4
EXXON	KANPUR	106	2005	30-90 DAYS	\$7,500	D/C
ΓΕΕΚΑΥ	BLUE SEA	105	2009	24 MOS	\$17,000	D/C
OMV	OHIO	105	2009	6 MOS	ARND. \$12,000 + P/S	AUG
CLEARLAKE	PYXIS KARTERIA	47	2013	70-150 DAYS	\$13,500	AUG
w/e 20/08/2021						
/ITOL	CAPTAIN X KYRIAKOU	319	2013	30-90 DAYS	\$ 9,750	AUG
SL ENERGY	CSK VALIANT	114	2017	1-6 MOS	ESCALATING FROM LOW-MID-TEENS	AUG
EXXON (SUBS)	AURVIKEN	113	2019	3 YRS	\$ 23,500	SEP
LAFNIA	CLEAROCEAN MAILANO	F0	2021	24:12 1405	\$15.750 <i>\</i> \$17.200	04.34
HAFNIA	CLEAROCEAN MILANO	50 50	2021	24+12 MOS	\$15,750/\$17,300	Q4 21
HAFNIA	CLEAROCEAN GINGKO	50	2021	24+12 MOS	\$15,750/\$17,300	Q4 21
w/e 13/08/2021						
CNR (SUBS)	EAGLE VERONA	320	2013	STTC	RNR	AUG
TRAFIGURA	IONIC ANASSA	114	2006	45-120 DAYS	RNR	AUG
TRAFIGURA	IRIDESCENT	112	2009	30-90 DAYS	RNR	AUG
CNR	CRUDE CENTURION	112	2010	30-90 DAYS	\$9,000/\$10,000/\$14,000	AUG
SIGNAL	IONIC ALTHEA	114	2016	6+6 MOS	\$17,500/\$20,500	AUG
w/e 06/08/2021						
CHEVRON	SENTEK NB	160	2021	3 YRS	\$29,000	Q4
CHEVRON	SENTEK NB	160	2021	3 YRS	\$29,000	Q4
CNR	NS LEADER	115	2007	1-3 MOS	RNR	AUG
EXXON	SEA TURTLE	114	2021	3 YRS	\$23,250	AUG
REPSOL	BAREILLY	106	2005	PNR	\$9,000	AUG
	otitle:	100	2003		45,555	.100
3P	HUNTER DISSEN	299	2020	50-90 DAYS	\$22,500	AUG
VITOL	ARISTARCHOS	79	2017	2-7 MOS	\$12,000	AUG
STENA BULK	GULF MISHREF	46	2010	5-7 MOS	RNR	AUG

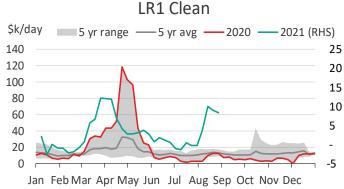
Spot Market

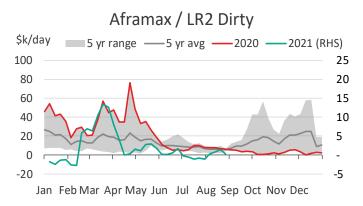
VLCC					Non Eco	o / Baltic	Non Eco scrui		Ed	o	Eco scri	ıbber
Route	kt	Description	WS/LS	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)
Round voyage		,		,		,		,		,		
TD01	280	MEG → USG	18.1	0.1	- 10,588	- 2,333	- 5,415	- 2,836	- 3,783	- 1,829	140 -	2,211
TD02	260	MEG → SPORE	33.0	1.0	245	- 1,191	5,610	- 1,941	5,272	- 820	9,754 -	1,447
TD03c	270	MEG → CHINA	32.0	0.5	- 3,487	- 1,540	1,296	- 2,208	2,356	- 1,112	6,001 -	1,622
TD15	260	WAFR → CHINA	33.7	0.7	684	- 1,443	5,774	- 2,155	7,483	- 944	11,310 -	1,479
TD22	270	USG → CHINA	4.0	0.1	3,365	- 1,808	9,053	- 1,740	10,233	- 1,283	14,435 -	1,233
Triangulated TD01 + TD22	,	MEG→USG→CHINA⊸AG			9,555	- 1,999	14,898	- 2,746	16,092	- 1,518	20,247 -	2,099
TD01 + TD15		MEG→USG→WAF→CHIN	A⊸AG		1,249		6,426		7,936		11,919 -	1,861
TD03c one w		WCI→AG→CHINA	,		9,570		14,450		13,878		17,811 -	1,534
	u,					1,200		.,0.0		001		1,001
Average					1,324		6,512 Non Eco	/ Raltic	7,433		11,452	
Suezmax	(Non Eco	/ Baltic	scrul		Ec	О	Eco scru	ıbber
Route	kt	Description	WS/LS	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)	TCE	∆ (w/w)
Round voyag	ge											
TD06	135	$BSEA \ \to \ MED$	63.5	1.0	1,538		5,843		4,569	- 1,550	8,255 -	1,505
TD20	130	$WAF \rightarrow UKC$	57.3	-0.2	742		4,550		5,942		8,731 -	962
BACM24	130	$WAF \rightarrow MED$	57.5	0.0	6,028		9,543		11,162	145	13,874	188
TD23	140	MEG → MED	25.4	0.0	- 17,756		- 13,526		- 12,271		,	2,246
BACM32	130	MEG → CHINA	57.5	2.5	3,192		7,037		8,959		11,760 -	1,739
BACM33	130	AG → ECI	62.5	0.0	5,689		9,817		10,298		13,596 -	1,675
BACM39	130	WAF → USAC	55.0	0.0	4,135	- 452	8,129	- 404	9,476	- 43	12,396 -	8
Triangulated BACM31		WCI→MEG→MED			- 15,270	- 1,813	- 10,852	- 2,244	- 9,944	- 1,420	- 6,486 -	1,756
		WOI AMILO AMILD			,	- 1,010	•	- 2,244	3,524	1,420	,	1,730
Average					- 1,463		2,568		3,324		6,637	
Aframax	/LR2	Dirty			Non Eco	/ Baltic	Non Eco scrul		Ec	о	Eco scru	ıbber
Route	kt	Description	WS/LS	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)
TD07	80	ECUK → CONT	92.8	0.3	- 6,319	- 339	- 6,319	- 339	- 5,190	- 249	- 5,190 -	249
TD08	80	$MEG \ \to \ SPORE$	97.2	2.2	7,122	- 2,348	10,531	- 2,680	10,632	- 2,089	13,408 -	2,359
BACM34	95	MEG → WCI	90.0	0.0	10,943		14,162		13,261		16,062 -	1,423
TD09	70	CARIBS → USG	80.0	0.0	- 4,772		- 2,061				225 -	2,484
TD14	80	SERIA → SYDNEY	99.9	-7.6	6,133		9,481		9,722		12,439 -	2,520
TD17	100	BALTIC → CONT	57.5	-1.0	- 2,552		- 2,516			,		1,333
TD19	80	EMED → WMED	87.2	-0.3	2,903		6,457		-,	- 1,099	8,470 -	1,062
TD25	70	USG → MED	80.4	10.0	- 3,225	870	452	915	518	1,156	3,430	1,191
Average					1,279		3,773		4,042		6,095	
Panama	k/LR1	1 Dirty			Non Eco	/ Baltic	Non Eco scrui		Ec	eo .	Eco scri	ıbber
Route	kt	Description	WS/LS	∆ (w/w)	TCE	Δ (w/w)	TCE	∆ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)
TD10	50	CARIBS → USAC	97.5	-2.5	3,278	- 1,597	5,031	- 1,576	4,173	- 1,528	5,769 -	1,509
TD12	55	$ARA \ \to \ USG$	95.0	0.0	4,793	- 1,118	6,700	- 1,095	6,301	- 1,001	7,959 -	981
TD21	50	CARIBS → USG	95.0	0.0	1,719		3,392		2,573		4,105 -	2,061
BACM06	55	WMED → USG	97.5	2.5	8,029	- 1,103	10,234	- 1,076	9,573	- 985	11,520 -	962
Average					4,455		6,339		5,655		7,338	
MR/Hand	dy Di	rty			Non Eco	o / Baltic	Non Eco scrui		Ed	:o	Eco scri	ıbber
Route	kt	Description	WS/LS	∆ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)
TD16	30	BSEA → MED	127.5	0.0	377	- 770	2,200	- 741	2,533	- 611	3,978 -	587
TD18	30	BALTC → CONT	145.0	0.0	5,421		6,997		7,566		8,721 -	2,418
BACM18	30	$CONT \to MED$	140.0	-7.5	- 128		2,034		1,460		3,298 -	1,832
BACM22	44	$BSEA \to MED$	107.5	0.0	9,111	- 845	10,741		10,617		12,011 -	
Average					3,695		5,493		5,544		7,002	

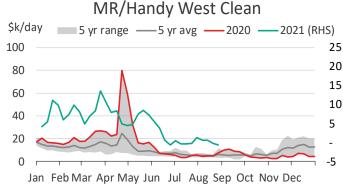

Spot Market

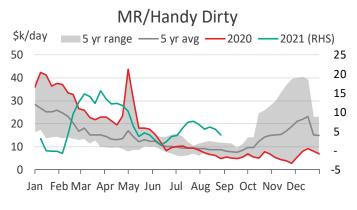


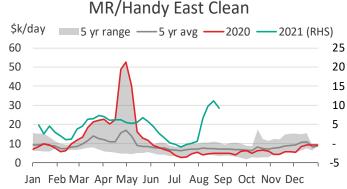

LR2 Clea	ın				Non Eco / Baltio	Non Ecc scru		Ec	o	Eco scru	ıbber
Route	kt	Description	WS/LS	Δ (w/w)	TCE ∆ (w/v) TCE	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)
TC01	75	MEG → JAPAN	110.0	12.5	10,999 4,4	7 14,421	4,104	14,625	4,705	17,393	4,436
BACM44	75	$SKOR \to WAF$	1.9	0.0	5,208 - 4,8	0 8,598	- 5,344	9,098 -	4,583	11,804 -	4,961
One way											
BACM03	80	$MALTA \ \to \ JAPAN$	1.6	0.0	12,078 - 2,8	15,637	- 3,370	15,774	- 2,600	18,683 -	3,006
BACM27	90	SPORE⊸AG→ARA	2.3	0.4	25,974 8,3	4 29,024	7,917	29,470	8,600	31,851	8,267
BACM29	75	JAPAN→SKOR→SPORE	0.5	0.0	10,163 - 5,9	7 13,321	- 6,398	12,047	- 5,818	14,874 -	6,213
BACM44	75	JAPAN→SKOR→WAF	1.9	0.0	5,208 - 4,8	0 8,598	- 5,344	9,098 -	- 4,583	11,804 -	4,961
Triangulated											
BACM27 + 03		MEG→ARA→MALTA→JAF	PAN		12,189 2,1		2,184	15,770	2,415	18,577	2,449
TC01 + BACN	/129	MEG→JAPAN→SKOR→S	SPORE→ME	G	16,461 2,6	5 19,802	2,178	19,584	2,875	22,376	2,485
Average					12,285	15,640		15,683		18,420	
LR1 Clea	n				Non Eco / Baltio	Non Ecc scru		Ec	o	Eco scru	ıbber
Route	kt	Description	WS/LS	Δ (w/w)	TCE ∆ (w/v		Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)
TC05	55	MEG → JAPAN	130.0	-2.5	11,241 - 1,0			12,875		15,212 -	1,187
TC08	65	MEG → ARA	1.9	0.1		9 12,136	610	11,429	960	13,491	759
TC16	60	ARA → WAF	85.0	5.0	·	7 5,731		4,656		6,848 -	324
BACM45	60	WCI → MEG	0.4	0.0	3,754 - 2,8			4,291		6,452 -	3,030
One way					,	•		•	,	,	ŕ
BACM30	55	MALTA → JAPAN	1.5	0.0	24,553 - 1,1	9 27,270	- 1,519	26,476	- 998	28,855 -	1,330
Triangulated					,,	, ,	,	-, -		-,	,
TC08 + BACN	/I30	SPOREAGARAMAI	LTA→JAPAN	I	14,042 -	16,789	- 29	15,702	64	18,116	94
					11,107	13,635		12,572		14,829	
Average						Man. 5 a.	- / D - 14! -				
MR/Hand	-	est Clean	WS/LS	Λ (w/w)	Non Eco / Baltio	scru	bber	Ec TCF		Eco scru	
MR/Hand Route	kt	Description	WS/LS	Δ (w/w)	TCE Δ (w/v	scru) TCE	bber ∆ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)
MR/Hand Route TC02	kt 37	Description ARA → USAC	115.0	15.0	TCE Δ (w/v 2,059 1,4	scru) TCE 7 3,084	bber Δ (w/w) 1,429	<i>TCE</i> 4,003	Δ (w/w) 1,569	<i>TCE</i> 4,836	Δ (w/w) 1,579
MR/Hand Route TC02 TC06	kt 37 30	Description ARA → USAC WMED → MED	115.0 115.0	15.0 0.0	7CE Δ (w/v 2,059 1,4 - 372 - 6	scru 7 3,084 1,377	bber Δ (w/w) 1,429 - 635	<i>TCE</i> 4,003 919	Δ (w/w) 1,569 - 557	TCE 4,836 2,404 -	Δ (w/w) 1,579 539
MR/Hand Route TC02 TC06 TC09	kt 37 30 30	Description ARA → USAC WMED → MED BALTIC → ARA	115.0 115.0 120.0	15.0 0.0 0.0	TCE Δ (w/v 2,059 1,4 - 372 - 6 2,479 - 8	scru 7 3,084 66 1,377 4 4,187	bber Δ (w/w) 1,429 - 635 - 803	TCE 4,003 919 4,785	Δ (w/w) 1,569 - 557 - 647	TCE 4,836 2,404 - 6,037 -	Δ (w/w) 1,579 539 632
MR/Hand Route TC02 TC06 TC09 TC14	kt 37 30 30 38	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA	115.0 115.0 120.0 75.0	15.0 0.0 0.0 0.0	TCE Δ (w/v 2,059 1,4 - 372 - 6 2,479 - 8 - 2,755 - 9	scru 7 3,084 66 1,377 4 4,187 6 - 1,178	bber Δ (w/w) 1,429 - 635 - 803 - 907	TCE 4,003 919 4,785 - 673	Δ (w/w) 1,569 - 557 - 647 - 768	7CE 4,836 2,404 - 6,037 - 609 -	Δ (w/w) 1,579 539 632 752
MR/Hand Route TC02 TC06 TC09 TC14 TC18	kt 37 30 30 38 38	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ	115.0 115.0 120.0 75.0 105.0	15.0 0.0 0.0 0.0 0.0	TCE Δ (w/v 2,059 1,4 - 372 - 6 2,479 - 8 - 2,755 - 9 2,462 - 2,1	scru 7CE 7 3,084 66 1,377 44 4,187 66 - 1,178 2 5,144	bber Δ (w/w) 1,429 - 635 - 803 - 907 - 2,047	7CE 4,003 919 4,785 - 673 4,983	Δ (w/w) 1,569 - 557 - 647 - 768 - 1,920	7CE 4,836 2,404 - 6,037 - 609 - 6,769 -	Δ (w/w) 1,579 539 632 752 1,898
MR/Hand Route TC02 TC06 TC09 TC14 TC18 BACM11	kt 37 30 30 38 38 38	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC	115.0 115.0 120.0 75.0 105.0 125.0	15.0 0.0 0.0 0.0 0.0 0.0	7CE Δ (w/v 2,059 1,4 - 372 - 6 2,479 - 8 - 2,755 - 9 2,462 - 2,1 1,440 - 8	scru 7CE 7 3,084 66 1,377 44 4,187 66 - 1,178 2 5,144 00 2,934	bber Δ (w/w) 1,429 - 635 - 803 - 907 - 2,047 - 842	7CE 4,003 919 4,785 - 673 4,983 3,964	Δ (w/w) 1,569 - 557 - 647 - 768 - 1,920 - 665	7CE 4,836 2,404 - 6,037 - 609 - 6,769 - 5,102 -	Δ (w/w) 1,579 539 632 752 1,898 651
MR/Hand Route TC02 TC06 TC09 TC14 TC18	kt 37 30 30 38 38	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ	115.0 115.0 120.0 75.0 105.0	15.0 0.0 0.0 0.0 0.0	TCE Δ (w/v 2,059 1,4 - 372 - 6 2,479 - 8 - 2,755 - 9 2,462 - 2,1 1,440 - 8 - 3,249 - 2,3	scru 7CE 7 3,084 66 1,377 44 4,187 66 - 1,178 2 5,144 00 2,934	bber Δ (w/w) 1,429 - 635 - 803 - 907 - 2,047 - 842 - 2,332	7CE 4,003 919 4,785 - 673 4,983 3,964	Δ (w/w) 1,569 - 557 - 647 - 768 - 1,920 - 665 - 2,223	7CE 4,836 2,404 - 6,037 - 609 - 6,769 -	Δ (w/w) 1,579 539 632 752 1,898
MR/Hand Route TC02 TC06 TC09 TC14 TC18 BACM11 BACM36	kt 37 30 30 38 38 38 30 30	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED	115.0 115.0 120.0 75.0 105.0 125.0 100.0	15.0 0.0 0.0 0.0 0.0 0.0 0.0	TCE Δ (w/v 2,059 1,4 - 372 - 6 2,479 - 8 - 2,755 - 9 2,462 - 2,1 1,440 - 8 - 3,249 - 2,3	scru 7CE 7 3,084 66 1,377 44 4,187 66 - 1,178 2 5,144 00 2,934 03 - 1,910 9 918	bber Δ (w/w) 1,429 - 635 - 803 - 907 - 2,047 - 842 - 2,332 - 706	7CE 4,003 919 4,785 - 673 4,983 3,964 - 1,547	Δ (w/w) 1,569 - 557 - 647 - 768 - 1,920 - 665 - 2,223 - 644	TCE 4,836 2,404 - 6,037 - 609 - 6,769 - 5,102 - 430 -	Δ (w/w) 1,579 539 632 752 1,898 651 2,205
MR/Hand Route TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37	kt 37 30 30 38 38 38 30 30 30	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED	115.0 115.0 120.0 75.0 105.0 125.0 100.0 120.0	15.0 0.0 0.0 0.0 0.0 0.0 0.0 -5.0	TCE Δ (w/v 2,059 1,4 - 372 - 6 2,479 - 8 - 2,755 - 9 2,462 - 2,1 1,440 - 8 - 3,249 - 2,3 - 1,026 - 7	scru 7CE 7 3,084 66 1,377 44 4,187 66 - 1,178 2 5,144 90 2,934 93 - 1,910 99 918	bber Δ (w/w) 1,429 - 635 - 803 - 907 - 2,047 - 842 - 2,332 - 706	7CE 4,003 919 4,785 - 673 4,983 3,964 - 1,547 85	Δ (w/w) 1,569 - 557 - 647 - 768 - 1,920 - 665 - 2,223 - 644	7CE 4,836 2,404 - 6,037 - 609 - 6,769 - 5,102 - 430 - 1,802 -	Δ (w/w) 1,579 539 632 752 1,898 651 2,205 624
MR/Hand Route TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37 BACM47	kt 37 30 30 38 38 38 30 30 30	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED	115.0 115.0 120.0 75.0 105.0 125.0 100.0 120.0	15.0 0.0 0.0 0.0 0.0 0.0 0.0 -5.0	TCE Δ (w/v 2,059 1,4 - 372 - 6 2,479 - 8 - 2,755 - 9 2,462 - 2,1 1,440 - 8 - 3,249 - 2,3 - 1,026 - 7	scru 7CE 7 3,084 66 1,377 64 4,187 66 - 1,178 2 5,144 60 2,934 63 - 1,910 9 918 88 22,498	bber Δ (w/w) 1,429 - 635 - 803 - 907 - 2,047 - 842 - 2,332 - 706 - 2,236	7CE 4,003 919 4,785 - 673 4,983 3,964 - 1,547 85	Δ (w/w) 1,569 - 557 - 647 - 768 - 1,920 - 665 - 2,223 - 644 - 2,118	7CE 4,836 2,404 - 6,037 - 609 - 6,769 - 5,102 - 430 - 1,802 -	Δ (w/w) 1,579 539 632 752 1,898 651 2,205 624
MR/Hand Route TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37 BACM47 One way	kt 37 30 30 38 38 38 30 30 30 35	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA	115.0 115.0 120.0 75.0 105.0 125.0 100.0 120.0	15.0 0.0 0.0 0.0 0.0 0.0 0.0 -5.0	TCE Δ (w/v 2,059 1,4 - 372 - 6 2,479 - 8 - 2,755 - 9 2,462 - 2,1 1,440 - 8 - 3,249 - 2,3 - 1,026 - 7 20,656 - 2,2	scru 7CE 7 3,084 66 1,377 64 4,187 66 - 1,178 2 5,144 60 2,934 63 - 1,910 9 918 88 22,498	bber Δ (w/w) 1,429 - 635 - 803 - 907 - 2,047 - 842 - 2,332 - 706 - 2,236	7CE 4,003 919 4,785 - 673 4,983 3,964 - 1,547 85 22,471	Δ (w/w) 1,569 - 557 - 647 - 768 - 1,920 - 665 - 2,223 - 644 - 2,118	TCE 4,836 2,404 6,037 609 6,769 5,102 - 430 1,802 23,994 -	Δ (w/w) 1,579 539 632 752 1,898 651 2,205 624 2,100
MR/Hand Route TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37 BACM47 One way BACM47	kt 37 30 30 38 38 38 30 30 30 35	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA	115.0 115.0 120.0 75.0 105.0 125.0 100.0 120.0	15.0 0.0 0.0 0.0 0.0 0.0 0.0 -5.0	TCE Δ (w/v 2,059 1,4 - 372 - 6 2,479 - 8 - 2,755 - 9 2,462 - 2,1 1,440 - 8 - 3,249 - 2,3 - 1,026 - 7 20,656 - 2,2	scru 7CE 7 3,084 66 1,377 64 4,187 66 - 1,178 2 5,144 60 2,934 63 - 1,910 9 918 88 22,498	bber Δ (w/w) 1,429 - 635 - 803 - 907 - 2,047 - 842 - 2,332 - 706 - 2,236	7CE 4,003 919 4,785 - 673 4,983 3,964 - 1,547 85 22,471	Δ (w/w) 1,569 - 557 - 647 - 768 - 1,920 - 665 - 2,223 - 644 - 2,118	TCE 4,836 2,404 6,037 609 6,769 5,102 - 430 1,802 23,994 -	Δ (w/w) 1,579 539 632 752 1,898 651 2,205 624 2,100
MR/Hand Route TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37 BACM47 One way BACM47	kt 37 30 30 38 38 38 30 30 30 35	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA	115.0 115.0 120.0 75.0 105.0 125.0 100.0 120.0	15.0 0.0 0.0 0.0 0.0 0.0 0.0 -5.0	TCE Δ (w/v 2,059 1,4 - 372 - 6 2,479 - 8 - 2,755 - 9 2,462 - 2,1 1,440 - 8 - 3,249 - 2,3 - 1,026 - 7 20,656 - 2,2	scru 7CE 7 3,084 66 1,377 64 4,187 66 - 1,178 2 5,144 60 2,934 63 - 1,910 9 918 82 22,498	bber Δ (w/w) 1,429 - 635 - 803 - 907 - 2,047 - 842 - 2,332 - 706 - 2,236 - 3,070	7CE 4,003 919 4,785 - 673 4,983 3,964 - 1,547 85 22,471 32,728	Δ (w/w) 1,569 - 557 - 647 - 768 - 1,920 - 665 - 2,223 - 644 - 2,118	7CE 4,836 2,404 6,037 609 6,769 5,102 430 1,802 23,994 34,174	Δ (w/w) 1,579 539 632 752 1,898 651 2,205 624 2,100 2,930
MR/Hand Route TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37 BACM47 One way BACM47 Triangulated TC02 + TC14	kt 37 30 30 38 38 38 30 30 35 35	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA ARA→USAC→USG→ARA	115.0 115.0 120.0 75.0 105.0 125.0 100.0 120.0	15.0 0.0 0.0 0.0 0.0 0.0 0.0 -5.0	TCE Δ (w/v 2,059 1,4 - 372 - 6 2,479 - 8 - 2,755 - 9 2,462 - 2,1 1,440 - 8 - 3,249 - 2,3 - 1,026 - 7 20,656 - 2,2 30,852 - 3,0	scru 7	bber Δ (w/w) 1,429 - 635 - 803 - 907 - 2,047 - 842 - 2,332 - 706 - 2,236 - 3,070 563	7CE 4,003 919 4,785 - 673 4,983 3,964 - 1,547 85 22,471 32,728	Δ (w/w) 1,569 - 557 - 647 - 768 - 1,920 - 665 - 2,223 - 644 - 2,118 - 2,947	7CE 4,836 2,404 6,037 609 6,769 5,102 - 430 1,802 23,994 34,174 8,432	Δ (w/w) 1,579 539 632 752 1,898 651 2,205 624 2,100 2,930 715
MR/Hand Route TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37 BACM47 One way BACM47 Triangulated TC02 + TC14 Average	kt 37 30 30 38 38 38 30 30 35 35	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA ARA→USAC→USG→ARA	115.0 115.0 120.0 75.0 105.0 125.0 100.0 120.0 1.3	15.0 0.0 0.0 0.0 0.0 0.0 -5.0 0.0	TCE Δ (w/v 2,059 1,4 - 372 - 66 2,479 - 88 - 2,755 - 99 2,462 - 2,1 1,440 - 8 - 3,249 - 2,3 - 1,026 - 7 20,656 - 2,2 30,852 - 3,0 5,440 5 5,271 Non Eco / Baltic	SCTU TCE	bber Δ (w/w) 1,429 - 635 - 803 - 907 - 2,047 - 842 - 2,332 - 706 - 2,236 - 3,070 563	7CE 4,003 919 4,785 - 673 4,983 3,964 - 1,547 85 22,471 32,728 7,443 7,196	Δ (w/w) 1,569 - 557 - 647 - 768 - 1,920 - 665 - 2,223 - 644 - 2,118 - 2,947 703	7CE 4,836 2,404 6,037 609 6,769 5,102 - 430 1,802 - 23,994 - 34,174 - 8,432 8,521 Eco scru	Δ (w/w) 1,579 539 632 752 1,898 651 2,205 624 2,100 2,930 715
MR/Hand Route TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37 BACM47 One way BACM47 Triangulated TC02 + TC14 Average MR/Hand Route	kt 37 30 30 38 38 38 30 30 35 35	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA ARA→USAC→USG→ARA Description	115.0 115.0 120.0 75.0 105.0 125.0 100.0 120.0 1.3	15.0 0.0 0.0 0.0 0.0 -5.0 0.0 0.0	TCE Δ (w/v 2,059 1,4 - 372 - 6 2,479 - 8 - 2,755 - 9 2,462 - 2,1 1,440 - 8 - 3,249 - 2,3 - 1,026 - 7 20,656 - 2,2 30,852 - 3,0 5,440 5 5,271 Non Eco / Baltic	SCTU TCE	bber Δ (w/w) 1,429 - 635 - 803 - 907 - 2,047 - 842 - 2,332 - 706 - 2,236 - 3,070 563 b / Baltic bber Δ (w/w)	7CE 4,003 919 4,785 - 673 4,983 3,964 - 1,547 85 22,471 32,728 7,443 7,196	Δ (w/w) 1,569 - 557 - 647 - 768 - 1,920 - 665 - 2,223 - 644 - 2,118 - 2,947 703	TCE 4,836 2,404 6,037 609 6,769 5,102 - 430 1,802 - 23,994 - 34,174 - 8,432 8,521 Eco scru	Δ (w/w) 1,579 539 632 752 1,898 651 2,205 624 2,100 2,930 715
MR/Hand Route TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37 BACM47 One way BACM47 Triangulated TC02 + TC14 Average MR/Hand Route TC07	kt 37 30 30 38 38 38 30 30 35 35 4 4 4 4 35	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA ARA→USAC→USG→ARA Description SPORE → OZ	115.0 115.0 120.0 75.0 105.0 125.0 100.0 120.0 1.3	15.0 0.0 0.0 0.0 0.0 -5.0 0.0 0.0 -5.0 0.0	TCE Δ (w/v 2,059 1,4 - 372 - 6 2,479 - 8 - 2,755 - 9 2,462 - 2,1 1,440 - 8 - 3,249 - 2,3 - 1,026 - 7 20,656 - 2,2 30,852 - 3,0 5,440 5 5,271 Non Eco / Baltic TCE Δ (w/w 12,935 - 2,5	SCTU TCE	bber Δ (w/w) 1,429 - 635 - 803 - 907 - 2,047 - 842 - 706 - 2,236 - 3,070 563 bear Δ (w/w) - 2,914	7CE 4,003 919 4,785 - 673 4,983 3,964 - 1,547 85 22,471 32,728 7,443 7,196 Ecc 7CE 15,360	Δ (w/w) 1,569 - 557 - 647 - 768 - 1,920 - 665 - 2,223 - 644 - 2,118 - 2,947 703	TCE 4,836 2,404 6,037 609 6,769 5,102 - 430 1,802 23,994 - 34,174 - 8,432 8,521 Eco scru TCE 17,444	Δ (w/w) 1,579 539 632 752 1,898 651 2,205 624 2,100 2,930 715
MR/Hand Route TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37 BACM47 One way BACM47 Triangulated TC02 + TC14 Average MR/Hand Route TC07 TC10	kt 37 30 30 38 38 38 30 30 35 35 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA ARA→USAC→USG→ARA Description SPORE → OZ SKOREA → USWC	115.0 115.0 120.0 75.0 105.0 125.0 100.0 120.0 1.3 WS/LS 200.0	15.0 0.0 0.0 0.0 0.0 -5.0 0.0 0.0 0.0 -5.0 0.0	TCE Δ (w/v 2,059 1,4 - 372 - 6 2,479 - 8 - 2,755 - 9 2,462 - 2,1 1,440 - 8 - 3,249 - 2,3 - 1,026 - 7 20,656 - 2,2 30,852 - 3,0 5,440 5 5,271 Non Eco / Baltic TCE Δ (w/w 12,935 - 2,5 12,428 - 5,4	Scrue TCE	bber Δ (w/w) 1,429 - 635 - 803 - 907 - 2,047 - 842 - 2,332 - 706 - 2,236 - 3,070 563 bear bear Δ (w/w) - 2,914 - 5,756	7CE 4,003 919 4,785 - 673 4,983 3,964 - 1,547 85 22,471 32,728 7,443 7,196 Ecc 7CE 15,360 - 14,512	Δ (w/w) 1,569 - 557 - 647 - 768 - 1,920 - 665 - 2,223 - 644 - 2,118 - 2,947 703	TCE 4,836 2,404 6,037 609 6,769 5,102 - 430 1,802 23,994 - 34,174 - 8,432 8,521 Eco scru TCE 17,444 16,055	Δ (w/w) 1,579 539 632 752 1,898 651 2,205 624 2,100 2,930 715
MR/Hand Route TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37 BACM47 One way BACM47 Triangulated TC02 + TC14 Average MR/Hand Route TC07 TC10 TC11	kt 37 30 30 38 38 38 30 30 35 35 45 41 40 40	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA ARA→USAC→USG→ARA Description SPORE → OZ SKOREA → USWC JAPAN → SPORE	115.0 115.0 120.0 75.0 105.0 125.0 100.0 120.0 1.3 WS/LS 200.0 1.2 0.5	15.0 0.0 0.0 0.0 0.0 -5.0 0.0 0.0 -5.0 0.0	TCE Δ (w/v 2,059 1,4 - 372 - 6 2,479 - 8 - 2,755 - 9 2,462 - 2,1 1,440 - 8 - 3,249 - 2,3 - 1,026 - 7 20,656 - 2,2 30,852 - 3,0 5,440 5 5,271 Non Eco / Baltic TCE Δ (w/w 12,935 - 2,5 12,428 - 5,4 10,156 - 3,0	Scru TCE	bber Δ (w/w) 1,429 - 635 - 803 - 907 - 2,047 - 842 - 2,332 - 706 - 2,236 - 3,070 563 bear Δ (w/w) - 2,914 - 5,756 - 3,316	7CE 4,003 919 4,785 - 673 4,983 3,964 - 1,547 85 22,471 32,728 7,443 7,196 Ecc 7CE 15,360 - 14,512 - 11,965	Δ (w/w) 1,569 - 557 - 647 - 768 - 1,920 - 665 - 2,223 - 644 - 2,118 - 2,947 703	TCE 4,836 2,404 6,037 609 6,769 5,102 - 430 1,802 23,994 - 34,174 - 8,432 8,521 Eco scru TCE 17,444 - 16,055 - 13,394 -	Δ (w/w) 1,579 539 632 752 1,898 651 2,205 624 2,100 2,930 715
MR/Hand Route TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37 BACM47 One way BACM47 Triangulated TC02 + TC14 Average MR/Hand Route TC07 TC10 TC11 TC12	kt 37 30 30 38 38 38 30 30 35 35 45 46 40 35	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA ARA→USAC→USG→ARA Description SPORE → OZ SKOREA → USWC JAPAN → SPORE SIKKA → JAPAN	115.0 115.0 120.0 75.0 105.0 125.0 100.0 120.0 1.3 WS/LS 200.0 1.2 0.5 132.5	15.0 0.0 0.0 0.0 0.0 0.0 0.0 -5.0 0.0 0.0 -5.0 0.0 0.0 -5.0 0.0 0.0	TCE Δ (w/v 2,059 1,4 - 372 - 6 2,479 - 8 - 2,755 - 9 2,462 - 2,1 1,440 - 8 - 3,249 - 2,3 - 1,026 - 7 20,656 - 2,2 30,852 - 3,0 5,440 5 5,271 Non Eco / Baltic TCE Δ (w/w 12,935 - 2,5 12,428 - 5,4 10,156 - 3,0 5,438 - 1,6	SCTU TCE	bber Δ (w/w) 1,429 - 635 - 803 - 907 - 2,047 - 842 - 706 - 2,236 - 3,070 563 ber Δ (w/w) - 2,914 - 5,756 - 3,316 - 1,897	7CE 4,003 919 4,785 - 673 4,983 3,964 - 1,547 85 22,471 32,728 7,443 7,196 FCC 7CE 15,360 - 14,512 - 11,965 - 7,525	Δ (w/w) 1,569 - 557 - 647 - 768 - 1,920 - 665 - 2,223 - 644 - 2,118 - 2,947 703	TCE 4,836 2,404 6,037 609 6,769 5,102 - 430 1,802 23,994 - 34,174 8,432 8,521 Eco scru TCE 17,444 16,055 13,394 9,274	Δ (w/w) 1,579 539 632 752 1,898 651 2,205 624 2,100 2,930 715 (bber Δ (w/w) 2,675 5,555 3,145 1,691
MR/Hand Route TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37 BACM47 One way BACM47 Triangulated TC02 + TC14 Average MR/Hand Route TC07 TC10 TC11 TC12 TC17	kt 37 30 30 38 38 38 30 30 35 35 45 46 40 35 35	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA ARA→USAC→USG→ARA Description SPORE → OZ SKOREA → USWC JAPAN → SPORE SIKKA → JAPAN MEG → EAF	115.0 115.0 120.0 75.0 105.0 125.0 100.0 120.0 1.3 WS/LS 200.0 1.2 0.5 132.5 177.5	15.0 0.0 0.0 0.0 0.0 0.0 0.0 -5.0 0.0 0.0 -5.0 0.0 0.0	TCE Δ (w/v 2,059 1,4 - 372 - 6 2,479 - 8 - 2,755 - 9 2,462 - 2,1 1,440 - 8 - 3,249 - 2,3 - 1,026 - 7 20,656 - 2,2 30,852 - 3,0 5,440 5 5,271 Non Eco / Baltic TCE Δ (w/w 12,935 - 2,5 12,428 - 5,4 10,156 - 3,0 5,438 - 1,6 9,643 - 2,2	SCTU TCE	bber Δ (w/w) 1,429 - 635 - 803 - 907 - 2,047 - 842 - 2,332 - 706 - 2,236 - 3,070 563 ber Δ (w/w) - 2,914 - 5,756 - 3,316 - 1,897 - 2,407	7CE 4,003 919 4,785 - 673 4,983 3,964 - 1,547 85 22,471 32,728 7,443 7,196 FCC 7CE 15,360 - 14,512 - 11,965 - 7,525 - 11,490 - 11,490	Δ (w/w) 1,569 - 557 - 647 - 768 - 1,920 - 665 - 2,223 - 644 - 2,118 - 2,947 703	TCE 4,836 2,404 6,037 609 6,769 5,102 - 430 1,802 23,994 - 34,174 - 8,432 8,521 Eco scru TCE 17,444 - 16,055 - 13,394 - 9,274 - 13,225	Δ (w/w) 1,579 539 632 752 1,898 651 2,205 624 2,100 2,930 715 (bber Δ (w/w) 2,675 5,555 3,145 1,691 2,238
MR/Hand Route TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37 BACM47 One way BACM47 Triangulated TC02 + TC14 Average MR/Hand Route TC07 TC10 TC11 TC12 TC17 BACM48	kt 37 30 30 38 38 38 30 30 35 35 45 46 40 35 35 35	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA ARA→USAC→USG→ARA Description SPORE → OZ SKOREA → USWC JAPAN → SPORE SIKKA → JAPAN	115.0 115.0 120.0 75.0 105.0 125.0 100.0 120.0 1.3 WS/LS 200.0 1.2 0.5 132.5	15.0 0.0 0.0 0.0 0.0 0.0 0.0 -5.0 0.0 0.0 -5.0 0.0 0.0 -5.0 0.0 0.0	TCE Δ (w/v 2,059 1,4 - 372 - 6 2,479 - 8 - 2,755 - 9 2,462 - 2,1 1,440 - 8 - 3,249 - 2,3 - 1,026 - 7 20,656 - 2,2 30,852 - 3,0 5,440 5 5,271 Non Eco / Baltic TCE Δ (w/w 12,935 - 2,5 12,428 - 5,4 10,156 - 3,0 5,438 - 1,6	SCTU TCE	bber Δ (w/w) 1,429 - 635 - 803 - 907 - 2,047 - 842 - 2,332 - 706 - 2,236 - 3,070 563 ber Δ (w/w) - 2,914 - 5,756 - 3,316 - 1,897 - 2,407	7CE 4,003 919 4,785 - 673 4,983 3,964 - 1,547 85 22,471 32,728 7,443 7,196 FCC 7CE 15,360 - 14,512 - 11,965 - 7,525	Δ (w/w) 1,569 - 557 - 647 - 768 - 1,920 - 665 - 2,223 - 644 - 2,118 - 2,947 703	TCE 4,836 2,404 6,037 609 6,769 5,102 - 430 1,802 23,994 - 34,174 8,432 8,521 Eco scru TCE 17,444 16,055 13,394 9,274	Δ (w/w) 1,579 539 632 752 1,898 651 2,205 624 2,100 2,930 715 (bber Δ (w/w) 2,675 5,555 3,145 1,691 2,238
MR/Hand Route TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37 BACM47 One way BACM47 Triangulated TC02 + TC14 Average MR/Hand Route TC07 TC10 TC11 TC12 TC17 BACM48 Triangulated	kt 37 30 30 38 38 38 30 30 35 35 35 40 40 35 35 35	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA ARA→USAC→USG→ARA Description SPORE → OZ SKOREA → USWC JAPAN → SPORE SIKKA → JAPAN MEG → EAF SPORE → HK	115.0 115.0 120.0 75.0 105.0 125.0 100.0 120.0 1.3 WS/LS 200.0 1.2 0.5 132.5 177.5 0.4	15.0 0.0 0.0 0.0 0.0 0.0 0.0 -5.0 0.0 0.0 -5.0 0.0 0.0	TCE Δ (w/v 2,059 1,4 - 372 - 6 2,479 - 8 - 2,755 - 9 2,462 - 2,1 1,440 - 8 - 3,249 - 2,3 - 1,026 - 7 20,656 - 2,2 30,852 - 3,0 5,440 5 5,271 Non Eco / Baltic TCE Δ (w/w 12,935 - 2,5 12,428 - 5,4 10,156 - 3,0 5,438 - 1,6 9,643 - 2,2 13,502 - 3,4	SCPU TCE	bber Δ (w/w) 1,429 - 635 - 803 - 907 - 2,047 - 842 - 2,332 - 706 - 2,236 - 3,070 563 b) / Baltic bber Δ (w/w) - 2,914 - 5,756 - 3,316 - 1,897 - 2,407 - 3,677	7CE 4,003 919 4,785 - 673 4,983 3,964 - 1,547 85 22,471 32,728 - 7,443 7,196 Ecc 7CE 15,360 - 14,512 - 11,965 - 7,525 - 11,490 - 15,012	Δ (w/w) 1,569 - 557 - 647 - 768 - 1,920 - 665 - 2,223 - 644 - 2,118 - 2,947 703	TCE 4,836 2,404 6,037 609 6,769 5,102 - 430 1,802 - 23,994 - 34,174 - 8,432 8,521 Eco scru TCE 17,444 - 16,055 - 13,394 - 9,274 - 13,225 - 16,295 -	Δ (w/w) 1,579 539 632 752 1,898 651 2,205 624 2,100 2,930 715 (bber Δ (w/w) 2,675 5,555 3,145 1,691 2,238 3,531
MR/Hand Route TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37 BACM47 One way BACM47 Triangulated TC02 + TC14 Average MR/Hand Route TC07 TC10 TC11 TC12 TC17 BACM48	kt 37 30 30 38 38 38 30 30 35 35 35 40 40 35 35 35	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA ARA→USAC→USG→ARA Description SPORE → OZ SKOREA → USWC JAPAN → SPORE SIKKA → JAPAN MEG → EAF	115.0 115.0 120.0 75.0 105.0 125.0 100.0 120.0 1.3 WS/LS 200.0 1.2 0.5 132.5 177.5 0.4	15.0 0.0 0.0 0.0 0.0 0.0 0.0 -5.0 0.0 0.0 -5.0 0.0 0.0	TCE Δ (w/v 2,059 1,4 - 372 - 6 2,479 - 8 - 2,755 - 9 2,462 - 2,1 1,440 - 8 - 3,249 - 2,3 - 1,026 - 7 20,656 - 2,2 30,852 - 3,0 5,440 5 5,271 Non Eco / Baltic TCE Δ (w/w 12,935 - 2,5 12,428 - 5,4 10,156 - 3,0 5,438 - 1,6 9,643 - 2,2	SCPU TCE	bber Δ (w/w) 1,429 - 635 - 803 - 907 - 2,047 - 842 - 2,332 - 706 - 2,236 - 3,070 563 b) / Baltic bber Δ (w/w) - 2,914 - 5,756 - 3,316 - 1,897 - 2,407 - 3,677	7CE 4,003 919 4,785 - 673 4,983 3,964 - 1,547 85 22,471 32,728 7,443 7,196 FCC 7CE 15,360 - 14,512 - 11,965 - 7,525 - 11,490 - 11,490	Δ (w/w) 1,569 - 557 - 647 - 768 - 1,920 - 665 - 2,223 - 644 - 2,118 - 2,947 703	TCE 4,836 2,404 6,037 609 6,769 5,102 - 430 1,802 23,994 - 34,174 - 8,432 8,521 Eco scru TCE 17,444 - 16,055 - 13,394 - 9,274 - 13,225	Δ (w/w) 1,579 539 632 752 1,898 651 2,205 624 2,100 2,930 715 hbber Δ (w/w) 2,675 5,555 3,145 1,691




Average Spot Earnings (basis Non Eco / Baltic standard vessel)





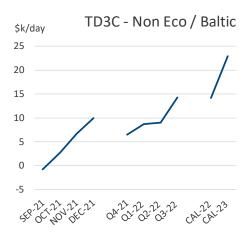


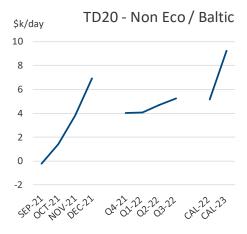
Dirty Wet FFAs

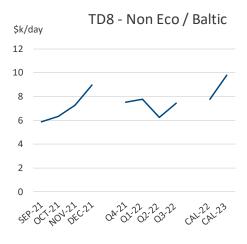
TD3c MEG → China 270kt

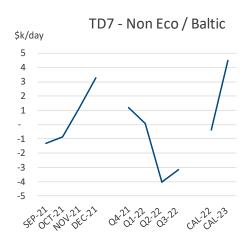
			Non Eco	o / Baltic	E	00
	WS	\$/t	No Scrubber	Scrubber	No Scrubber	Scrubber
Spot	32.00	5.83	- 3,487	1,296	2,356	6,001
SEP-21	34.50	6.29	- 816	4,238	4,974	8,825
OCT-21	37.75	6.88	2,685	8,086	8,428	12,543
NOV-21	41.50	7.57	6,683	12,443	12,382	16,772
DEC-21	44.50	8.11	9,901	15,751	15,570	20,029
Q4-21	41.25	7.52	6,424	12,189	12,127	16,449
Q1-22	43.06	7.85	8,672	14,535	14,293	18,761
Q2-22	43.06	7.85	8,984	14,783	14,543	18,962
Q3-22	48.00	8.75	14,318	20,039	19,808	24,169
CAL-22	48.00	8.75	14,157	19,917	19,682	24,072
CAL-23	55.68	10.15	22,929	28,547	28,261	32,543

TD20 W. Africa → UK Cont 130kt

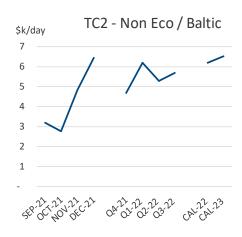

			Non Eco	o / Baltic	E	co
	WS	\$/t	No Scrubber	Scrubber	No Scrubber	Scrubber
Spot	57.27	8.09	742	4,550	5,942	8,731
SEP-21	57.00	8.05	- 212	3,411	5,815	8,638
OCT-21	60.00	8.47	1,424	5,296	7,395	10,299
NOV-21	64.50	9.11	3,802	7,932	9,733	12,711
DEC-21	70.50	9.95	6,936	11,131	12,828	15,861
Q4-21	65.00	9.18	4,055	8,183	9,987	12,959
Q1-22	64.45	9.10	4,087	8,290	9,930	12,970
Q2-22	65.16	9.20	4,684	8,841	10,476	13,496
Q3-22	65.86	9.30	5,260	9,362	10,996	14,022
CAL-22	65.86	9.30	5,140	9,270	10,907	13,947
CAL-23	72.59	10.25	9,236	13,265	14,834	17,901


TD8 Kuwait → Singapore 80kt

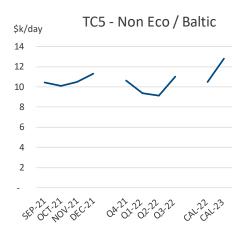

		· ·				
			Non Eco	o / Baltic	E	СО
	WS	\$/t	No Scrubber	Scrubber	No Scrubber	Scrubber
Spot	97.22	12.27	7,122	10,531	10,632	13,408
SEP-21	93.00	11.74	5,867	9,392	9,459	12,345
OCT-21	94.00	11.86	6,314	10,081	9,911	12,964
NOV-21	96.75	12.21	7,298	11,317	10,916	14,130
DEC-21	101.75	12.84	8,959	13,040	12,478	15,860
Q4-21	97.50	12.30	7,524	11,551	11,128	14,321
Q1-22	97.46	12.30	7,773	11,863	11,336	14,675
Q2-22	91.92	11.60	6,237	10,282	9,757	13,095
Q3-22	95.09	12.00	7,434	11,425	10,915	14,239
CAL-22	96.51	12.18	7,772	11,790	11,273	14,604
CAL-23	101.03	12.75	9,793	13,712	13,159	16,520


TD7 N. Sea → UK Cont 80kt

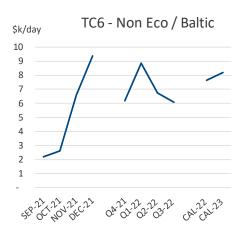
				Non Ec	Baltic	Eco				
	WS	\$/t	S	No crubber	s	crubber	s	No crubber	s	crubber
Spot	92.81	5.46	-	6,319	-	6,319	-	5,190	-	5,190
SEP-21	103.00	6.06	-	1,325	-	1,325		205		205
OCT-21	104.00	6.12	-	845	-	845		745		745
NOV-21	108.00	6.35		1,147		1,147		2,797		2,797
DEC-21	112.00	6.59		3,272		3,272		4,899		4,899
Q4-21	108.00	6.35		1,194		1,147		2,811		2,811
Q1-22	105.44	6.20		77		77		1,703		1,703
Q2-22	96.94	5.70	-	4,044	-	4,044	-	2,437	-	2,437
Q3-22	98.64	5.80	-	3,148	-	3,148	-	1,544	-	1,544
CAL-22	104.25	6.13	-	359	-	359		1,255		1,255
CAL-23	113.10	6.65		4,503		4,503		6,072		6,072



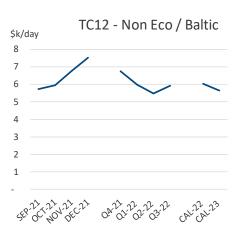
Clean Wet FFAs


TC2 UK Cont \rightarrow US AC 37kt

			Non Eco	o / Baltic	E	00
	WS	\$/t	No Scrubber	Scrubber	No Scrubber	Scrubber
Spot	115.00	23.53	2,059	3,084	4,003	4,836
SEP-21	124.00	25.37	3,206	4,181	5,451	6,293
OCT-21	121.00	24.76	2,764	3,806	5,013	5,880
NOV-21	134.00	27.42	4,826	5,938	7,085	7,974
DEC-21	144.00	29.46	6,462	7,591	8,702	9,607
Q4-21	133.00	27.21	4,685	5,781	6,933	7,820
Q1-22	85.29	17.45	6,194	7,325	8,420	9,327
Q2-22	81.38	16.65	5,293	6,412	7,499	8,401
Q3-22	82.60	16.90	5,683	6,787	7,877	8,780
CAL-22	84.80	17.35	6,211	7,323	8,415	9,322
CAL-23	84.80	17.35	6,535	7,619	8,681	9,596


TC5 MEG → Japan 55kt

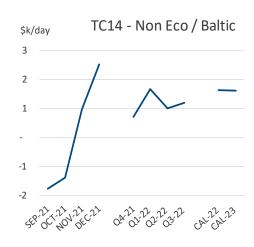
			Non Eco	o / Baltic	Eco		
	WS	\$/t	No Scrubber	Scrubber	No Scrubber	Scrubber	
Spot	130.00	13.96	11,241	13,872	12,875	15,212	
SEP-21	126.00	13.53	10,433	13,154	12,141	14,570	
OCT-21	124.00	13.32	10,108	13,016	11,830	14,400	
NOV-21	125.25	13.45	10,473	13,575	12,221	14,926	
DEC-21	128.75	13.83	11,299	14,449	13,032	15,817	
Q4-21	126.00	13.53	10,627	13,735	12,363	15,050	
Q1-22	227.19	24.40	9,383	12,540	11,103	13,913	
Q2-22	223.46	24.00	9,117	12,239	10,813	13,624	
Q3-22	238.83	25.65	11,003	14,084	12,682	15,480	
CAL-22	235.10	25.25	10,501	13,603	12,190	14,994	
CAL-23	251.40	27.00	12,804	15,830	14,421	17,250	


TC6 Skikda → Lavera 30kt

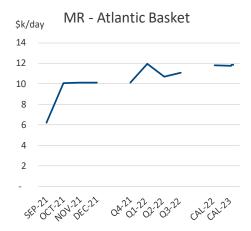
			Non Eco	o / Baltic	Eco		
	WS	\$/t	No Scrubber	Scrubber	No Scrubber	Scrubber	
Spot	115.00	23.53	- 372	1,377	919	2,404	
SEP-21	127.00	25.98	2,199	3,863	3,851	5,355	
OCT-21	128.50	26.29	2,624	4,403	4,249	5,796	
NOV-21	144.50	29.56	6,546	8,443	8,151	9,737	
DEC-21	156.00	31.92	9,368	11,295	10,963	12,578	
Q4-21	143.00	29.26	6,180	8,081	7,789	9,372	
Q1-22	48.88	10.00	8,863	10,794	10,444	12,062	
Q2-22	45.94	9.40	6,732	8,641	8,302	9,909	
Q3-22	44.97	9.20	6,088	7,972	7,643	9,254	
CAL-22	47.07	9.63	7,631	9,528	9,194	10,813	
CAL-23	47.41	9.70	8,179	10,029	9,702	11,335	

TC12 WCI → Japan 35kt

1012 1101 Gapan 6611										
			Non Eco	o / Baltic	Eco					
	WS	\$/t	No Scrubber	Scrubber	No Scrubber	Scrubber				
Spot	132.50	24.02	5,438	7,554	7,525	9,274				
SEP-21	134.00	24.29	5,731	7,967	7,805	9,653				
OCT-21	135.00	24.48	5,959	8,348	8,018	9,993				
NOV-21	140.00	25.38	6,752	9,301	8,798	10,904				
DEC-21	145.00	26.29	7,528	10,116	9,563	11,702				
Q4-21	140.00	25.38	6,747	9,301	8,793	10,866				
Q1-22	137.89	25.00	5,970	8,564	7,988	10,132				
Q2-22	133.48	24.20	5,487	8,052	7,483	9,603				
Q3-22	135.69	24.60	5,922	8,453	7,895	9,988				
CAL-22	137.07	24.85	6,044	8,592	8,029	10,136				
CAL-23	131.27	23.80	5,631	8,117	7,549	9,604				



Clean Wet FFAs


TC14 USG \rightarrow UK Cont 38kt

				Non Eco / Baltic			Eco		
	WS	\$/t	s	No crubber	S	crubber	No Scrubber	Scrubber	
Spot	75.00	14.06	-	2,755	-	1,178	- 673	609	
SEP-21	81.00	15.18	-	1,767	-	277	646	1,934	
OCT-21	83.00	15.55	-	1,385		207	1,015	2,340	
NOV-21	97.00	18.18		974		2,673	3,369	4,727	
DEC-21	106.00	19.86		2,528		4,253	4,905	6,288	
Q4-21	95.33	17.86		706		2,397	3,096	4,451	
Q1-22	96.05	18.00		1,664		3,393	4,023	5,410	
Q2-22	91.52	17.15		1,005		2,714	3,344	4,721	
Q3-22	92.05	17.25		1,193		2,880	3,515	4,895	
CAL-22	94.98	17.80		1,644		3,342	3,977	5,363	
CAL-23	92.85	17.40		1,629		3,286	3,901	5,299	

MR - Atlantic Basket

_	\$/day	
Spot	4695	
SEP-21	6,221	
OCT-21	10,085	
NOV-21	10,114	
DEC-21	10,140	
Q4-21	10,113	
Q1-22	11,940	
Q2-22	10,719	
Q3-22	11,073	
CAL-22	11,833	
CAL-23	11,825	

FFA Comments

Braemar ACM Tanker Weekly 27 August 2021 | Week 34

TD3c: With over 30 fixtures this week out of the AG (by our count), the market was buzzing with positive sentiment, that moved the spot market up a full WS to 32ws top print! Jokes aside, it was a fairly pathetic move, because there is so much tonnage to chew through, but, with another week like this week, and we should see some sort of meaningful gains, if that does indeed materialise. Traders all seem to have the same idea when it came to the paper, so the market was bid at marks, or above marks for most of the week, but with the offers a few points out of reach, no one saw it fit to move the market for small volume. We do end the week at higher numbers for the balance of this year, but with very little volume to show for it. Td3c Sep is now worth closer to 35ws, with it being no more than 33 at the start of the week. the Q4 traded up to a top print of 41ws, with it having dipped to 38ws last week, and the deferred made gains on a \$/tonne basis too, with the flat price being at least \$4 higher than at some point last week. But, on a \$/day basis the backend of the curve is fairly unmoved, with some people rolling length down the curve on q1/2 again, but the cal stayed steady at around \$15k a day, which is now more like \$8.85/tonne. Have a good long weekend, and hopefully this is the start of some sort of meaningful move up on VL rates which have been at rock bottom for so long.

Angus Proctor

TD20: Volumetrically this has been the biggest week so far this year with a tad over 2 million tonnes trading, but don't be fooled as the main bulk was born from a Q1/Q2 roll, that being said 435kt trades in Sep alone trading 58ws then stabilizing down @ 57ws (\$3,066 \$per day basis no scrubbed Suez Max). However as mentioned before the big ticket was the Q1/Q2 spread trading @ -.10c in 260kt per month Q1-22 @ 9.1 \$pmt (\$7,337 \$per day) vs Q2-22 @ 9.2 \$pmt (\$8,023 \$per day) that's a differential of -\$646 per day.

Jay Lovell

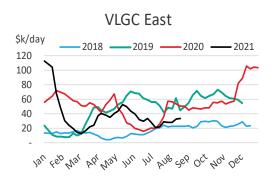
TC2: What started off as a steady week for TC2 quickly turned into a firming market, with plenty of under the radar fixing pushing rates up, with BITR closing the week out at 115.56, up 16ws from the week opener. Off the back of the firming spot, we saw an uptick on the paper, with the front of the curve garnering the majority of the interest. TC2 Sep was paid up from 116ws to 130ws at the high on Thursday, however trades lower to close 124ws last. Oct trades up from 118ws to 121ws and the Q421 sees a lone print of 133ws. The Cal22 was rather quiet this week, with value pegged at 17.35 \$/mt which gives a TCE of \$7,714 a day on Baltic parameters.

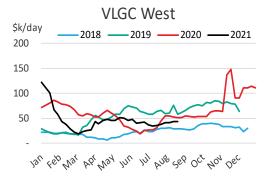
Josh Smithson

TC5: We see the LR1's and 2's maintain their firm sentiment this week and its apparent with the strengthening of the paper. 135-140ws the call for TC5 and steady while the TC1 is 110ws and firm. Nearly 1 million tonnes trade this week in a fairly solid week for paper. The September is the phoenix from the flames after a softening blow last week sees us open things up at 109 in size before continually firming throughout the week with things sitting at 114ws mid-week before further paying up sees us charge into 128-127ws before a sell down to 124ws on close. Oct has a pretty lacklustre week as we see just 4 trades with an open of 110-109ws firming slightly to 113ws on close. Things pick up for the Q4 as we begin the week at 114.5ws before a continual firming throughout the week culminates in 126ws on close a couple of times.

Joseph Robert McCarthy

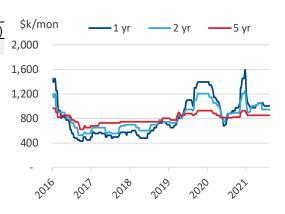
TC14: A quiet week for TC14 as spot rates dropped a few points to 73.5ws. Paper market has seen limited action, but liquidity has been solid, with almost 300kt dealing. Sep traded from ws83 to ws79.5 before jumping back to ws80 and then ws81 last. October traded at ws83. Nov remains valued at ws96 and Dec at ws106. Finally, Calendar2022 continues to be marked at 17.8 \$/mt.


Damian Viskovic



VLGC Spot Market

21
\$/day)
552
790
163
502
9


Basis round voyage, 'modern vessel'

VLGC Time Charter Assessment (\$/month)

1 Yr			2 Y	5 Yr			
Ī	TC	∆ (w/w)	TC	∆ (w/w)	TC	Δ	(w/w)
ĺ	1,000,000	-	950,000	-	850,000		-

LPG FFA

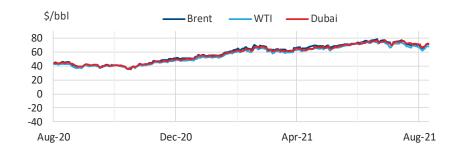
BLPG MEG → Japan 44kt

DEI G IVIL	$-0 \rightarrow \text{Japan} + \text{KL}$
	\$/t
Spot	45.86
SEP-21	49.25
OCT-21	53.00
NOV-21	54.50
DEC-21	55.50
Q4-21	54.33
Q1-22	53.50
Q2-22	51.00
Q3-22	51.00
CAL-22	51.88
CAL-23	51.00

A week of meagre activity which was blighted by a lack of volatility on spot and unfavourable arbs. Relets were keeping a ceiling spot physical rates however confidence remained in Sep, trading around \$5 dollars over the index when we are converging on Sept. Sept traded initially at 51, 50 then 49.5 in good size. Oct saw trades at 52.5 and 53 and the Q4 traded a couple of times at 53. The Cal-22 failed to print, however value was seen at \$52, giving us a TCE of \$34,473 per day (\$1.05m per month) down \$2k per day on the

week.

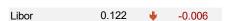
Sam Mitchell


Bunker Prices

	HSFO		MGO			VLSFO	
Port	\$/t Δ (w/w) 1 yr avg.	$t \Delta (w/w)$	1 yr avg.	\$/t	∆ (w/w)	1 yr avg.
Rotterdam	403 🏚 10.39	% 333.7	568 🏚 8.7%	463.8	506 🏚	8.3%	419.0
Singapore	436 🏚 13.59	% 353.8	573 🛖 8.6%	474.5	529 🏚	8.0%	445.2
Houston	403.75 🛖 10.29	% 336.3	609 🛖 8.0%	498.8	508 🏚	8.3%	423.2
Fujairah	432.25 🛖 12.69	% 341.3	637 🛖 7.6%	534.3	527 🏚	8.0%	441.0
Gibraltar	427.5 • 9.6%	6 357.3	600 🛖 8.2%	491.6	507 🏚	8.3%	431.2
Piraeus	435 🏚 9.4%	6 366.0		-		-	-
Tokyo	545.5 • 9.7%	6 457.2	729 🏚 6.6%	592.4	562 🏚	7.5%	471.1

Commodity Prices

	Cri	Cruae					
	\$/bbl	Δ (w/w)					
Brent	71.5	9.4%					
Dubai	72.19	7.7%					
WTI	67.59	8.6%					



Exchange Rates

Currency	1 US\$ =		Δ (w/w)
Aus Dollar	\$ 0.73	1	\$0.01
British Pound	£0.73	•	-£0.007
Chinese Yuan	¥6.48	Ψ	¥-0.025
Euro	€ 0.85	•	-€ 0.005
Japanese Yen	¥109.99	•	¥0.190
Korean Won	₩1,163.87	Ψ	-₩11.280
Saudi Riyal	ر.س. 3.75	4	ر.س. 0.000

Interest Rates

About Braemar ACM Shipbroking

Braemar ACM Shipbroking is one of the world's largest shipbroking companies. Headquartered in London, with around 450 employees worldwide, Braemar ACM Shipbroking has broking Offices in the UK, US, Australia, China, Singapore, Greece, Switzerland, Brazil, Dubai and India. Braemar ACM Shipbroking offers broking in Tankers, Offshore, Containers, Dry Bulk, Gas, Chemicals, Sale and Purchase, Newbuilding, Dry/Wet Freight and Coal Derivatives, Ship Recycling, Research and Consultancy and Valuations. Braemar ACM Shipbroking is a member of The Baltic Exchange, Institute of Chartered Shipbrokers, the London Tanker Brokers' Panel, Worldscale Association, Intertanko, Intercargo and BIMCO.

Braemar ACM Shipbroking was formed in 2014 following the merger of two shipping services companies: Braemar Shipping Services Plc (established 1972 as Seascope) and ACM Shipping Plc (established 1982) Braemar Shipping Services plc is listed on the London Stock Exchange.

Braemar ACM Shipbroking Research

Email: research@braemar.com Phone: UK +44 203 142 4200

Singapore: +65 6579 1088

Website: www.braemaracm.com

Disclaimer

The information contained within this report is given in good faith based on the current market situation at the time of preparing this report and as such is specific to that point only. While all reasonable care has been taken in the preparation and collation of information in this report Braemar Shipping Services Plc (and all associated and affiliated companies) does not accept any liability whatsoever for any errors of fact or opinion based on such facts.

Some industry information relating to the shipping industry can be difficult to find or establish. Some data may not be available and may need to be estimated or assessed and where such data may be limited or unavailable subjective assessment may have to be used.

No market analysis can guarantee accuracy. The usual fundamentals may not always govern the markets, for example psychology, market cycles and external events (such as acts of god or developments in future technologies) could cause markets to depart from their natural/usual course. Such external events have not been considered as part of this analysis. Historical market behaviour does not predict future market behaviour and shipping is an inherently high risk business. You should therefore consider a variety of information and potential outcomes when making decisions based on the information contained in this report.

All information provided by Braemar Shipping Services Plc is without any guarantee whatsoever. Braemar Shipping Services Plc or any of its subsidiaries or affiliates will not be liable for any consequences thereof.

This report is intended solely for the information of the email recipient account and must not be passed or divulged to any third parties whatsoever without the written permission of Braemar Shipping Services Plc. Braemar Shipping Services Plc accepts no liability to any third parties whatsoever.

If permission is granted, you must disclose the full report including all disclaimers, and not selected excerpts which may be taken out of context.

Assumptions used in this report

Vessel Specs				TCE earnings calculation assumptions basis Baltic (Non Eco) / Eco								
				Speed Bunker Consumption							Port Days	
Uncoated	Typical DWT ('000)	Typical capacity ('000 cbm)	Avg exist. fleet > 15 yrs ldt	Ballast (kts)	Laden (kts)	Ballast (t/d)	Laden (t/d)	Load (t/d)	Dsch (t/d)	Wait (t/d)	Load (d)	Dsch (d)
VLCC	>200	n/a	a 42,500	12.5/ 12	13/ 13	53/ 36	70/ 55	20/ 20	110/ 70	10/10	2/2.5	2/2.5
Suezmax	124.5 - 200	n/a	a 23,000	12.5/ 13	13/13	44/30	53/40	12/ 7.5	68/40	10/10	2/2.5	2/2.5
Aframax	84.5 - 124.5	n/a	a 17,000	12.5/13	13/ 13	36/ 28	43/ 33	10/6	55/30	5/8	2/2.5	2/2.5
Panamax	53.5 - 84.5	60 - 90	0 13,500	12.5/13	13/ 13	44/30	53/40	12/7.5	68/40	10/10	2/2.5	2/2.5
Coated												
LR2	84.5 - 124.9		17,000	12.5/13	13/ 13	36/28	43/ 33	10/6	42.5/30	5/8	2/2.5	2/2.5
LR1	53.5 - 84.5	60 - 90	0 13,500	12.5/13	13/ 13	28/ 25	33/28	5/ <mark>5</mark>	32/17.5	5/ <mark>5</mark>	2/2.5	2/2.5
MR	41 - 56.5	46 - 60	0 10,000	12.5/13	13/ 13	22.5/19	28/ 22	5/3.5	25/ 12	5/ 5	2/2.5	2/2.5
Handy	25 - 41	29 - 40	6 9,000	12.5/13	13/13	22.5	28	5	25	5	2/2.5	2/2.5