

Weekly Tanker Market Report

Week 30

Published: 30 July 2021

Contents	Page
Time Charter Assessments	2 - 4
Recent Period Fixtures	5
Spot Earnings	6 - 8
Dirty Wet FFAs	9
Clean Wet FFAs	10 - 11
FFA Comments	12
LPG Market	13
Prices and Indices	14



Uncoated Tankers

Timecharter assessments - crude

		1 Y	r	2 Y	r	3 Y	r	5 Yı	r
	Vessel	TC	Δ	TC	Δ	TC	Δ	TC	Δ
	Non Eco	22,000	-	26,000	-	28,000	-		
VLCC	Eco	33,000	-	35,000	-	34,000	-	35,500	-
	Eco scrubber					36,000	-	37,500	-
	Non Eco	17,500	-	20,000	-	22,000	-		
Suezmax	Eco	21,000	-	24,000	-	25,000	-	25,500	-
	Eco scrubber					26,000	-	26,500	-
	Non Eco	15,500	-	17,500	-	19,500	-		
Aframax	Eco	18,500	-	20,500	-	21,500	-	22,000	-
	Eco scrubber					22,500	-	23,000	-

Non Eco 1 Yr TC

VLCC Eco TC

VLCC Eco vs Non Eco 1 Yr TC

VLCC Eco vs Eco Scrubber 3 Yr TC

July is never the most buoyant of months in the Period sector. The obvious reasons for this are Summer Holidays, Europeans, Americans and many the world over take a mid-year break and, with a lesser workforce, the serious business is sidelined somewhat. Big decisions are harder to come to at this time of year. But this year, we are maybe clutching at straws and using that as an excuse. The much more compelling reality is that this market is well and truly nailed to a bottom level that, for now, has no bull argument. So traders and Oil Company representatives alike can not argue the case for taking cover. Even though a ship today would still be about the lowest that one could achieve, there is still risk, even at these meagre levels, of making a loss. Optionality is the key for Charterers, but the bid/offer on these deals is still proving a hurdle. Owners decide often to take their chances on the loss making spot market, ever hopeful of a turnaround. The levels on offer, are just too much of a bitter pill to concede to.

With this said, there was limited fixture activity to talk about this week, apart from one 2006 MOL VLCC covering IOC for their 1 year option 1 year requirement. Kasagisan fixed at USD 22,000 per day for the first fixed year, with the optional period at USD 25,000 per

day. Terms on these Indian deals can be a little onerous on the Owner, and this will be delivery at the foot of the Middle East, necessitating a ballast for delivery on Owner's account. In general, one should look at this deal as a steady level for this calibre of ship. There were also some questions about New Building VLCCs for short period to begin their life trading Distillates. As yet, there is not a concluded deal reported, the wind changes direction easily on this ARB trade, so it can happen or die in a flash.

Quiet on the Suezmaxes, with one deal publicized by a stock-listed Owner, but full facts not forthcoming. Many Owners on this size, will talk short period, or otherwise want a 2-3 year to mitigate perceived losses for a more sustained period.

Aframaxes probably had more of the attention than their counterparts in this last week. Questions and even open market enquiries were present. It is a game of cat and mouse however. A couple of Eastern refiners look to charter in for various periods. There are also Operators willing to take ships from their competitors. Pools are trying to build and absorb tonnage from smaller Owners, especially in the weaker market, this usually comes to the surface.

Coated Tankers

Timecharter assessments - clean

		1 Y	r	2 Yı	<u> </u>	3 Yı	r	5 Yr	
	Vessel	TC	Δ	TC	Δ	TC	Δ	TC	Δ
	Non Eco	16,500	-	19,500	-	20,500	-		
LR2	Eco	18,500	-	23,000	-	24,000	-	24,750	-
	Eco scrubber					25,250	-	26,000	-
	Non Eco	14,000	-	15,500	-	16,000	-		
LR1	Eco	15,000	-	16,500	-	17,000	-	17,000	-
	Eco scrubber					17,750	-	17,750	-
	Non Eco	11,750	-	13,000	-	14,000	-		
MR	Eco	14,250	-	15,250	-	15,750	-	16,000	-
	Eco scrubber					16,500	-	16,500	-
Handy	Non Eco	11,500	-	12,500	_	13,000	-		

Non Eco 1 Yr TC

MR Eco vs Non Eco 1 Yr TC

MR Eco TC

MR Eco vs Eco Scrubber 3 Yr TC

Following on from last week's comments it nice to have something a little more positive to write, I mean its still not to break out the bubbly, far from but we are finally starting to see an uptick in product demand and signs that we maybe seeing the start of some sort of recovery. The MR's have been the main focus on the period market due to TC2 pushing up to the heady heights of ws 140. As a result of this we have seen a handful of MR2's being fixed albeit on shorter period and then the news that Exxon has signed a deal to take del of 6 MR tankers ex yard del 2023 for a period of 10 years, so on the basis we had nothing to report last week we can only see this as positive.

Time Charter

Braemar ACM Tanker Weekly 30 July 2021 | Week 30

Time charter forward curve

		1 Yr		2 Yr		3 Yr		4 Yr		5 Yr	
Vessel		TC	Δ								
VLCC	Non Eco	22,000	-	30,000	-	32,000	-				
VLCC	Eco	33,000	-	37,000	-	32,000	-	37,000	-	38,500	-
Suezmax	Non Eco	17,500	-	22,500	-	26,000	-				
Suezillax	Eco	21,000	-	27,000	-	27,000	-	26,000	-	26,500	-
Aframax	Non Eco	15,500	-	19,500	-	23,500	-				
Allalliax	Eco	18,500	-	22,500	-	23,500	-	22,500	-	23,000	-
LR2	Non Eco	16,500	-	22,500	-	22,500	-				
LNZ	Eco	18,500	-	27,500	-	26,000	-	25,500	-	26,250	-
104	Non Eco	14,000	-	17,000	-	17,000	-				
LR1	Eco	15,000	-	18,000	-	18,000	-	17,000	-	17,000	-
MR	Non Eco	11,750	-	14,250	-	16,000	-				
IVIK	Eco	14,250	-	16,250	-	16,750	-	16,250	-	16,500	-
Handy	Non Eco	11,500	-	13,500	-	14,000	-				

Explanation: if a Suezmax is fixed for a two year TC at a two year rate of \$31k and sub-let during year one at a one year rate of \$37k, then only \$25k is needed in year two to break-even over the two years. So year one is \$37k, year two is \$25k. If the three year rate is \$26k, this means that \$16k is needed in year three to break even on a three year TC where year one was \$37k and year two was \$25k. And so on.

Period Fixtures

Braemar ACM Tanker Weekly 30 July 2021 | Week 30

w/e 30/07/2021							
Charterer	Vessel	DWT	Build	Period	Rate	Laycan	Notes
CLEARLAKE	ATHENIAN SUCCESS	317	2010	30-90 DAYS	\$9,000	JULY	DTY DEL SPORE
IOC (SUBS)	KASAGISAN	302	2006	12+12 MOS	\$22,000/\$25,000	AUG	DTY DEL EC INDIA
LITASCO (SUBS)	NAVE ORBIT	50	2009	3+3 MOS	\$10,250/\$12,250	AUG	CPP DEL ARA IMO 2/3
MJOLNER	DONG-A-THEMIS	49	2015	3-6 MOS	RNR	JULY	CPP DEL F.EAST SCRUBBER FITTED
w/e 23/07/2021							
Charterer	Vessel	DWT	Build	Period	Rate	Laycan	Notes
TRAFIGURA	AIGEORGIS	116	2021	40-100 DAYS	LOW TEENS	JULY	DTY DEL TURKEY
ST SHIPPING	FOS DA VINCI	115	2009	30-90 DAYS	1-30 DAYS AT \$10,000 31-60 DAYS AT \$10,500 61-90 DAYS AT \$12,000	JULY	DTY DEL BALTIC
RELIANCE	MARAN ATLAS	105	2009	6 MOS	\$14,500	AUG	DTY DEL RED SEA
SCORPIO	BOUGAINVILLE	50	2013	12 MOS	RNR	JULY	CPP DEL SPORE IMO 2/3
w/e 16/07/2021							
Charterer	Vessel	DWT	Build	Period	Rate	Laycan	Notes
GREAT EASTERN	ADVANTAGE START	156	2011	18-22 MONTHS	\$22,500	JULY	DTY DEL BRAZIL SCRUBBER FITTED
ATC	HANOVER SQUARE (C'LEAKE RELET)	114	2019	12 MOS	\$18,350	JULY	CPP DEL AG
ST SHIPPING	SEALEGEND	110	2021	12+12 MOS	\$22,000/\$24,000	AUG	CPP DEL EX-YARD S.KOREA SCRUBBER FITTED
косн	YASA ORION	50	2021	3-6 MOS	\$13,500	JULY	CPP DEL USG IMO 2/3 SCRUBBER FITTED
КОСН	YASA VEGA	50	2021	3-6 MOS	\$13,500	JULY	CPP DEL MED IMO 2/3 SCRUBBER FITTED
w/e 09/07/2021							
Charterer	Vessel	DWT	Build	Period	Rate	Laycan	Notes
LMCS	AYSE C (KOCH RELET)	158	2020	18 MOS	\$26,500	Q3	DTY DEL INDIA SCRUBER FITTED
LMCS	ZEYNEP (KOCH RELET)	158	2020	18 MOS	\$26,500	Q3	DTY DEL INDIA SCRUBER FITTED

Spot Market

Braemar ACM Tanker Weekly 30 July 2021 | Week 30

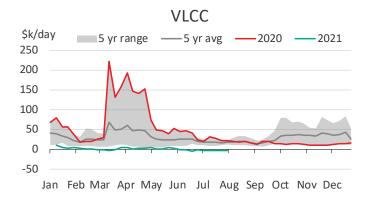
VLCC					Non Eco	/ Baltic	Non Eco		Ed	co	Eco sci	rubber
Route	kt	Description	WS/LS	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)
Round voyage		,,,,,		(-)		(-)		(- /		(')		
TD01	280	MEG → USG	18.4	-0.1	- 11,163	- 536	- 5,051	- 1,231	- 4,124	- 436	511	- 962
TD02	260	MEG → SPORE	32.3	-0.5	- 1,830	- 1,123		- 1,656	3,430		9,236	- 1,468
TD03c	270	MEG → CHINA	31.5	-1.1	- 5,443	- 1,041	754	- 1,517	673	- 928	5,396	- 1,290
TD15	260	WAFR → CHINA	33.9	-0.1	- 556	- 1,378	6,040	- 1,884	6,560	- 1,244	11,518	- 1,625
TD22	270	$USG \to CHINA$	4.1	0.0	2,689	- 1,194	8,596	- 1,440	9,804	- 1,051	14,168	- 1,233
Triangulated												
TD01 + TD2	2	MEG→USG→CHINA→AG			9,094	- 1,132	16,017		,	- 1,003	,	- 1,416
TD01 + TD1		MEG→USG→WAF→CHIN	NA→AG			- 1,077	-,	- 1,591	7,218		,	- 1,340
TD03c one v	way	WCl→AG→CHINA			7,210	- 1,326	13,533	- 1,812	11,721	- 1,245	16,818	- 1,636
Average					28		6,492		6,402		11,418	
Suezma	X				Non Eco	/ Baltic	Non Eco		Ed	:0	Eco scr	ubber
Route	kt	Description	WS/LS	Δ (w/w)	TCE	Δ (w/w)	TCE		TCE	A (14/14/)	TCE	A (\a(\)a()
		Description	VV 3/L3	Δ (w/w)	TCL	Δ (W/W)	TCE	Δ (w/w)	TOE	Δ (w/w)	TOE	∆ (w/w)
Round voya	•	BSEA → MED	EQ 0	6.5	- 2,831	- 174	1,848	- 236	338	04	1216	445
TD06 TD20	135 130	WAF → UKC	59.0 55.0	6.5 0.0	- 2,831 - 1.416		2,723		4,020		4,346 7,053	
BACM24	130	WAF → UKC WAF → MED	55.0	0.0	3,393		7,883		8,793		12,257	
TD23	140	MEG → MED	26.4	0.0	- 17,916		- 12,918		- 12,243		- 8,413	
BACM32	130	MEG → CHINA	55.0	0.0	811		5,793		6,845		10,475	
BACM33	130	$AG \rightarrow ECI$	62.5	0.0	4,906	- 348	9,785	- 902	9,673	- 278	13,570	- 720
BACM39	130	$WAF \ \to \ USAC$	52.5	0.0	1,792	- 631	6,134	- 689	7,378	- 486	10,552	- 528
Triangulated												
BACM31		WCl→MEG→MED			- 17,481	- 603	- 12,261	- 1,196	- 11,973	- 522	- 7,887	- 986
Average					- 3,593		1,123		1,604		5,244	
Aframax	/LR2	? Dirty			Non Eco	/ Baltic	Non Eco scrui		Ed	co	Eco scr	ubber
Route	kt	Description	WS/LS	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)
TD07	80	ECUK → CONT	95.6	0.6	- 5,589	- 367	- 5,589	` ′	- 4,417		- 4,417	
TD08	80	MEG → SPORE	94.4	1.9	5,604	338	9,632		9,233	392	12,514	19
BACM34	95	$MEG \to WCI$	90.0	0.0	10,333	- 271	14,137	- 703	12,730	- 236	16,040	- 612
TD09	70	$CARIBS \ \to \ USG$	80.0	5.0	- 5,440	- 428	- 2,625	- 545	- 2,501	- 367	- 258	- 461
TD14	80	$SERIA \ \to \ SYDNEY$	95.0	2.5	3,757	3,309	8,094	2,976	7,512	3,380	11,032	3,110
TD17	100	BALTIC → CONT	62.5	0.0	- 766		- 727		1,773		1,803	
TD19	80	EMED → WMED	86.9	-0.6		- 1,938		- 1,990	4,622			- 1,914
TD25	70	USG → MED	67.5	-0.4	- 6,857	- 497	- 3,039	- 656	- 2,980	- 417	44	- 543
Average					377		3,215		3,247		5,585	
_						. 	Non Eco	/ Baltic	_		_	
Panama	X/LR	1 Dirty			Non Eco	/ Baitic	scru	bber	E		Eco sci	rubber
Route	kt	Description	WS/LS	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)
TD10	50	$CARIBS \ \to \ USAC$	100.0	0.0	3,277		5,182		4,212		5,947	
TD12	55	$ARA \ \to \ USG$	95.0	-2.5	4,170		6,244		5,745		7,548	
TD21	50	CARIBS → USG	97.5	0.0	1,793	240	3,531	167	2,679	259	4,269	192
BACM06	55	WMED → USG	100.0	2.5	8,146	- 328	10,436	- 423	9,746	- 293	11,767	- 377
Average					4,347		6,348		5,595		7,383	
MR/Han	dy Di	irty			Non Eco	/ Baltic	Non Eco		Ed	0	Eco sci	rubber
Route	kt	Description	WS/LS	Δ (w/w)	TCE	Δ (w/w)	TCE	∆ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)
TD16			155.0		5,851		7,748		8,080		9,584	
TD16	30 30	BSEA → MED BALTC → CONT	155.0	-12.5 0.0	5,859		7,748		8,080		9,584	
BACM18	30	CONT → MED	145.0	0.0	108		2,459		1,770		3,768	
BACM22	44	BSEA → MED	120.0	0.0	11,569		13,651		13,152		14,934	
A					F 6 47		7.05-				0.444	
Average					5,847		7,857		7,776		9,411	

Spot Market

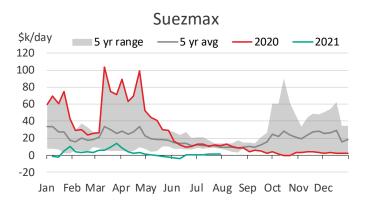
LR2 Cle	an				Non Eco	/Baltic	Non Eco scrub		E	ю	Eco sci	rubber
Route	kt	Description	WS/LS	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)
ΓC01	75	MEG → JAPAN	87.5	0.0	3,779 -	300	7,822 -	759	7,528	- 245	10,799	- 61
BACM44	75	SKOR → WAF	1.7	0.0	2,246 -	383	6,638 -	720	6,316	- 306	9,822	- 57
One way												
BACM03	80	MALTA → JAPAN	1.5	0.0	9,760	270	14,372 -	84	13,628	343	17,397	5
BACM27	90	SPORE→AG→ARA	1.7	-0.1	9,181 -		13,132 -		12,839		15,924	
BACM29	75	JAPAN→SKOR→SPORE	0.4	0.0	3,154 -		7,246 -		5,126		8,789	
BACM44	75	JAPAN→SKOR→WAF	1.7				6,638 -		6,316			
		JAPAN→SKUK→WAF	1.7	0.0	2,246 -	383	0,030 -	720	0,310	- 306	9,822	- 57
Triangulate					4 405		0.007		7.040		40.000	
BACM27 + (MEG→ARA→MALTA→JAF			4,165 -		8,007 -		7,910		10,962	
ГС01 + ВА	CM29	MEG→JAPAN→SKOR→S	SPORE→MI	EG	7,812 -	388	12,141 -	720	11,080	- 326	14,697	- 60
Average					5,293		9,499		8,843		12,277	
LR1 Cle	an				Non Eco	/Baltic	Non Eco scrub		Ed	00	Eco sci	rubber
Route	kt	Description	WS/LS	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)
TC05	55	MEG → JAPAN	85.0	-2.5	1,104 -	232	4,213 -	585	2,794	- 207	5,555	- 52
ΓC08	65	MEG → ARA	1.3	0.0	- 2,313 -		4,213 -		,		1,818	
ΓC16		MEG → ARA ARA → WAF	80.0		- 2,313 - 1,414 -		4,101 -		2.874		5,258	
BACM45	60			0.0					, -			
	60	$WCI \rightarrow MEG$	0.2	0.0	- 6,723 -	577	- 4,055 -	880	- 6,167	- 569	- 3,613	- 85
One way												
BACM30	55	$MALTA \rightarrow JAPAN$	1.6	0.1	26,597	3,126	30,118	2,856	28,609	3,164	31,692	2,92
Triangulate												
C08 + BA0	CM30	SPORE→AG→ARA→MAI	LTA→JAPA	.N	8,195	900	11,182	860	9,932	945	12,556	91
					4,712		7,670		6,237		8,878	
Average					,		,		·			
•	idy W	est Clean			Non Eco	/ Baltic	Non Eco		Ed	co	Eco sci	rubber
MR/Han	i dy W	est Clean Description	WS/LS	Δ (w/w)	,	/ Baltic ∆ (w/w)	Non Eco		E C	CO Δ (w/w)	Eco sci	
MR/Han Route	-		WS/LS 140.0	Δ (w/w) 10.0	Non Eco		Non Eco scrub	ber				Δ (w/w
MR/Han Route rc02	kt	Description			Non Eco	Δ (w/w) 3,967	Non Eco scrub	ber Δ (w/w) 3,952	TCE	Δ (w/w) 4,022	TCE	Δ (w/w 4,0°
MR/Han Route rC02 rC06	kt 37	Description ARA → USAC WMED → MED	140.0	10.0 -5.0	Non Eco / TCE 5,480 - 766 -	Δ (w/w) 3,967 1,444	Non Eco A scrub TCE 6,595 1,135	ber Δ (w/w) 3,952	<i>TCE</i> 7,506 584	Δ (w/w) 4,022 - 1,409	TCE 8,411 2,199	Δ (w/w 4,0°
MR/Han Route FC02 FC06 FC09	kt 37 30 30	Description ARA → USAC WMED → MED BALTIC → ARA	140.0 115.0 130.0	10.0 -5.0 10.0	Non Eco / TCE 5,480 - 766 - 3,637	Δ (w/w) 3,967 - 1,444 1,324	Non Eco A scrub TCE 6,595 1,135 5,494	ber ∆ (w/w) 3,952 1,469 1,299	7,506 584 6,049	Δ (w/w) 4,022 - 1,409 1,387	TCE 8,411 2,199 7,410	Δ (w/w 4,0° - 1,43 1,36
MR/Han Route FC02 FC06 FC09 FC14	kt 37 30 30 30	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA	140.0 115.0 130.0 90.0	10.0 -5.0 10.0 10.0	7CE 5,480 - 766 - 3,637 - 717	Δ (w/w) 3,967 - 1,444 1,324 1,362	Non Eco A scrub TCE 6,595 1,135 5,494 921	ber ∆ (w/w) 3,952 1,469 1,299 1,294	7,506 584 6,049 1,440	Δ (w/w) 4,022 - 1,409 1,387 1,410	TCE 8,411 2,199 7,410 2,771	Δ (w/w 4,0° - 1,4° 1,3° 1,3°
MR/Han Route ΓC02 ΓC06 ΓC09 ΓC14 ΓC18	kt 37 30 30 30 38 38	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ	140.0 115.0 130.0 90.0 120.0	10.0 -5.0 10.0 10.0	7CE 5,480 - 766 - 3,637 - 717 4,385 -	Δ (w/w) 3,967 1,444 1,324 1,362 237	Non Eco A scrub TCE 6,595 1,135 5,494 921 7,169	ber Δ (w/w) 3,952 1,469 1,299 1,294 320	7CE 7,506 584 6,049 1,440 6,996	Δ (w/w) 4,022 - 1,409 1,387 1,410 - 183	7CE 8,411 2,199 7,410 2,771 8,852	Δ (w/w 4,0° - 1,43 1,36 1,35 - 26
MR/Han Route FC02 FC06 FC09 FC14 FC18 BACM11	kt 37 30 30 38 38 38	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC	140.0 115.0 130.0 90.0 120.0 125.0	10.0 -5.0 10.0 10.0 0.0 -5.0	7CE 5,480 - 766 - 3,637 - 717 4,385 - 960 -	Δ (w/w) 3,967 1,444 1,324 1,362 237 1,155	Non Eco A scrub TCE 6,595 1,135 5,494 921 7,169 2,583	ber Δ (w/w) 3,952 1,469 1,299 1,294 320 1,176	7,506 584 6,049 1,440 6,996 3,593	Δ (w/w) 4,022 - 1,409 1,387 1,410 - 183 - 1,084	7CE 8,411 2,199 7,410 2,771 8,852 4,831	Δ (w/w 4,0° - 1,43 1,36 1,35 - 26 - 1,10
MR/Han Route FC02 FC06 FC09 FC14 FC18 BACM11 BACM36	kt 37 30 30 38 38 38 30 30	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED	140.0 115.0 130.0 90.0 120.0 125.0 102.5	10.0 -5.0 10.0 10.0 0.0 -5.0	7CE 5,480 - 766 - 3,637 - 717 4,385 - 960 - 3,412	Δ (w/w) 3,967 1,444 1,324 1,362 237 1,155 2,361	Non Eco A scrub TCE 6,595 1,135 5,494 921 7,169 - 2,583 - 1,700	ber Δ (w/w) 3,952 1,469 1,299 1,294 320 1,176 2,268	7,506 584 6,049 1,440 6,996 3,593 - 1,626	Δ (w/w) 4,022 - 1,409 1,387 1,410 - 183 - 1,084 2,399	7CE 8,411 2,199 7,410 2,771 8,852 4,831 - 198	Δ (w/w 4,01 - 1,43 1,36 1,35 - 26 - 1,10 2,32
MR/Han Route FC02 FC06 FC09 FC14 FC18 BACM11 BACM36 BACM37	kt 37 30 30 30 38 38 38 30 30	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED	140.0 115.0 130.0 90.0 120.0 125.0 102.5 130.0	10.0 -5.0 10.0 10.0 0.0 -5.0 0.0	Non Eco / TCE 5,480 - 766 - 3,637 - 717 4,385 - 960 - - 3,412 215 -	Δ (w/w) 3,967 1,444 1,324 1,362 237 1,155 2,361 262	Non Eco A scrub TCE 6,595 1,135 5,494 921 7,169 - 2,583 - 1,700 2,328	ber Δ (w/w) 3,952 1,469 1,299 1,294 320 1,176 2,268 290	7CE 7,506 584 6,049 1,440 6,996 3,593 - 1,626 1,377	Δ (w/w) 4,022 - 1,409 1,387 1,410 - 183 - 1,084 2,399 - 231	TCE 8,411 2,199 7,410 2,771 8,852 4,831 - 198 3,244	Δ (w/w 4,01 - 1,43 1,36 1,35 - 26 - 1,10 2,32 - 25
MR/Han Route FC02 FC06 FC09 FC14 FC18 BACM11 BACM36 BACM37 BACM47	kt 37 30 30 38 38 38 30 30	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED	140.0 115.0 130.0 90.0 120.0 125.0 102.5	10.0 -5.0 10.0 10.0 0.0 -5.0	7CE 5,480 - 766 - 3,637 - 717 4,385 - 960 - 3,412	Δ (w/w) 3,967 1,444 1,324 1,362 237 1,155 2,361	Non Eco A scrub TCE 6,595 1,135 5,494 921 7,169 - 2,583 - 1,700	ber Δ (w/w) 3,952 1,469 1,299 1,294 320 1,176 2,268	7,506 584 6,049 1,440 6,996 3,593 - 1,626	Δ (w/w) 4,022 - 1,409 1,387 1,410 - 183 - 1,084 2,399	7CE 8,411 2,199 7,410 2,771 8,852 4,831 - 198	Δ (w/w 4,01 - 1,43 1,36 1,35 - 26 - 1,10 2,32 - 25
MR/Han Route FC02 FC06 FC09 FC14 FC18 BACM11 BACM36 BACM37 BACM47 One way	kt 37 30 30 30 38 38 38 30 30	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED	140.0 115.0 130.0 90.0 120.0 125.0 102.5 130.0	10.0 -5.0 10.0 10.0 0.0 -5.0 0.0	Non Eco / TCE 5,480 - 766 - 3,637 - 717 4,385 - 960 - - 3,412 215 -	Δ (w/w) 3,967 1,444 1,324 1,362 237 1,155 2,361 262	Non Eco A scrub TCE 6,595 1,135 5,494 921 7,169 2,583 - 1,700 2,328 15,121	ber Δ (w/w) 3,952 1,469 1,299 1,294 320 1,176 2,268 290	7CE 7,506 584 6,049 1,440 6,996 3,593 - 1,626 1,377	Δ (w/w) 4,022 - 1,409 1,387 1,410 - 183 - 1,084 2,399 - 231	7CE 8,411 2,199 7,410 2,771 8,852 4,831 - 198 3,244 16,670	Δ (w/w 4,01 - 1,43 1,36 1,35 - 26 - 1,10 2,32 - 25
MR/Han Route TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37 BACM47 One way	kt 37 30 30 30 38 38 38 30 30	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED	140.0 115.0 130.0 90.0 120.0 125.0 102.5 130.0	10.0 -5.0 10.0 10.0 0.0 -5.0 0.0	Non Eco / TCE 5,480 - 766 - 3,637 - 717 4,385 - 960 - - 3,412 215 -	Δ (w/w) 3,967 1,444 1,324 1,362 237 1,155 2,361 262	Non Eco A scrub TCE 6,595 1,135 5,494 921 7,169 - 2,583 - 1,700 2,328	ber Δ (w/w) 3,952 1,469 1,299 1,294 320 1,176 2,268 290	7CE 7,506 584 6,049 1,440 6,996 3,593 - 1,626 1,377	Δ (w/w) 4,022 - 1,409 1,387 1,410 - 183 - 1,084 2,399 - 231	TCE 8,411 2,199 7,410 2,771 8,852 4,831 - 198 3,244	Δ (w/w 4,01 - 1,43 1,36 - 26 - 1,10 2,32 - 25 2,54
MR/Han Route FC02 FC06 FC09 FC14 FC18 BACM11 BACM36 BACM37 BACM47 One way BACM47	kt 37 30 30 38 38 38 30 30 30 35	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA	140.0 115.0 130.0 90.0 120.0 125.0 102.5 130.0	10.0 -5.0 10.0 10.0 0.0 -5.0 0.0	Non Eco / TCE 5,480 - 766 - 3,637 - 717 4,385 - 960 - - 3,412 215 - 13,118	Δ (w/w) 3,967 1,444 1,324 1,362 237 1,155 2,361 262 2,515	Non Eco A scrub TCE 6,595 1,135 5,494 921 7,169 2,583 - 1,700 2,328 15,121	ber Δ (w/w) 3,952 1,469 1,299 1,294 320 1,176 2,268 290 2,488	7CE 7,506 584 6,049 1,440 6,996 3,593 - 1,626 1,377 15,015	Δ (w/w) 4,022 - 1,409 1,387 1,410 - 183 - 1,084 2,399 - 231 2,565	7CE 8,411 2,199 7,410 2,771 8,852 4,831 - 198 3,244 16,670	Δ (w/w 4,01 - 1,43 1,36 - 26 - 1,10 2,32 - 25 2,54
MR/Han Route TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37 BACM47 One way BACM47 Triangulate	kt 37 30 30 38 38 38 30 30 30 30 35	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA	140.0 115.0 130.0 90.0 120.0 125.0 102.5 130.0 1.0	10.0 -5.0 10.0 10.0 0.0 -5.0 0.0	Non Eco / TCE 5,480 - 766 - 3,637 - 717 4,385 - 960 - - 3,412 215 - 13,118	Δ (w/w) 3,967 1,444 1,324 1,362 237 1,155 2,361 262 2,515	Non Eco A scrub TCE 6,595 1,135 5,494 921 7,169 2,583 - 1,700 2,328 15,121	ber Δ (w/w) 3,952 1,469 1,299 1,294 320 1,176 2,268 290 2,488	7CE 7,506 584 6,049 1,440 6,996 3,593 - 1,626 1,377 15,015	Δ (w/w) 4,022 - 1,409 1,387 1,410 - 183 - 1,084 2,399 - 231 2,565	7CE 8,411 2,199 7,410 2,771 8,852 4,831 - 198 3,244 16,670	Δ (W/W 4,01 - 1,43 1,36 - 26 - 1,10 2,32 - 25 4,21
MR/Han Route TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM47 One way BACM47 Triangulate TC02 + TC	kt 37 30 30 38 38 38 30 30 30 30 35	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA	140.0 115.0 130.0 90.0 120.0 125.0 102.5 130.0 1.0	10.0 -5.0 10.0 10.0 0.0 -5.0 0.0	Non Eco / TCE 5,480 - 766 - 3,637 - 717 4,385 - 960 - 3,412 215 - 13,118 19,152	Δ (w/w) 3,967 1,444 1,324 1,362 237 1,155 2,361 262 2,515 4,179	Non Eco scrub TCE 6,595 1,135 5,494 921 7,169 2,583 - 1,700 2,328 15,121 21,081	ber Δ (w/w) 3,952 1,469 1,299 1,294 320 1,176 2,268 290 2,488 4,153	7CE 7,506 584 6,049 1,440 6,996 3,593 - 1,626 1,377 15,015 21,113	Δ (w/w) 4,022 - 1,409 1,387 1,410 - 183 - 1,084 2,399 - 231 2,565 4,231	TCE 8,411 2,199 7,410 2,771 8,852 4,831 - 198 3,244 16,670 22,684	Δ (W/W 4,01 - 1,43 1,36 - 26 - 1,10 2,32 - 25 4,21
MR/Han Route TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM47 One way BACM47 Triangulate TC02 + TC	kt 37 30 30 38 38 38 30 30 35 35	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA	140.0 115.0 130.0 90.0 120.0 125.0 102.5 130.0 1.0	10.0 -5.0 10.0 10.0 0.0 -5.0 0.0	7CE 5,480 - 766 - 3,637 - 717 4,385 - 960 - 3,412 215 - 13,118 19,152 9,439	Δ (w/w) 3,967 1,444 1,324 1,362 237 1,155 2,361 262 2,515 4,179 3,686	Non Eco scrub TCE 6,595 1,135 5,494 921 7,169 2,583 - 1,700 2,328 15,121 21,081 10,801	ber Δ (w/w) 3,952 1,469 1,299 1,294 320 1,176 2,268 290 2,488 4,153 3,668	7CE 7,506 584 6,049 1,440 6,996 3,593 - 1,626 1,377 15,015 21,113	Δ (w/w) 4,022 - 1,409 1,387 1,410 - 183 - 1,084 2,399 - 231 2,565 4,231 3,742	TCE 8,411 2,199 7,410 2,771 8,852 4,831 - 198 3,244 16,670 22,684	Δ (w/w 4,01 - 1,43 1,36 - 26 - 1,10 2,32 - 25 2,54 4,21
MR/Han Route FC02 FC06 FC09 FC14 FC18 BACM11 BACM36 BACM47 One way BACM47 Triangulate FC02 + TC	kt 37 30 30 38 38 38 30 30 35 35	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA ARA→USAC→USG→ARA	140.0 115.0 130.0 90.0 120.0 125.0 102.5 130.0 1.0	10.0 -5.0 10.0 10.0 0.0 -5.0 0.0 0.0	7CE 5,480 - 766 - 3,637 - 717 4,385 - 960 - 3,412 215 - 13,118 19,152 9,439 4,681	Δ (w/w) 3,967 1,444 1,324 1,362 237 1,155 2,361 262 2,515 4,179 3,686	Non Econscrub TCE 6,595 1,135 5,494 921 7,169 2,583 - 1,700 2,328 - 15,121 21,081 10,801 6,502 Non Econscrub	ber Δ (w/w) 3,952 1,469 1,299 1,294 320 1,176 2,268 290 2,488 4,153 3,668	7CE 7,506 584 6,049 1,440 6,996 3,593 - 1,626 1,377 15,015 21,113 11,528 6,689	Δ (w/w) 4,022 - 1,409 1,387 1,410 - 183 - 1,084 2,399 - 231 2,565 4,231 3,742	7CE 8,411 2,199 7,410 2,771 8,852 4,831 - 198 3,244 16,670 22,684 12,604 8,134	Δ (w/w 4,0° - 1,4° 1,3° - 26° - 1,10° 2,3° - 25° 4,2° 3,7° rubber
MR/Han Route FC02 FC06 FC09 FC14 FC18 BACM11 BACM36 BACM47 One way BACM47 Triangulate FC02 + TC	kt 37 30 30 38 38 38 30 30 35 35 44 44	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA ARA→USAC→USG→ARA Description	140.0 115.0 130.0 90.0 120.0 125.0 102.5 130.0 1.0	10.0 -5.0 10.0 10.0 0.0 -5.0 0.0 0.0	Non Eco // TCE 5,480 - 766 - 3,637 - 717 4,385 - 960 - 3,412 215 - 13,118 19,152 9,439 4,681 Non Eco //	Δ (w/w) 3,967 1,444 1,324 1,362 237 1,155 2,361 262 2,515 4,179 3,686	Non Eco / scrub TCE 6,595 1,135 - 5,494 921 7,169 - 2,583 - 1,700 2,328 - 15,121 21,081 10,801 6,502 Non Eco / scrub TCE	ber Δ (w/w) 3,952 1,469 1,299 1,294 320 1,176 2,268 290 2,488 4,153 3,668	7CE 7,506 584 6,049 1,440 6,996 3,593 - 1,626 1,377 15,015 21,113 11,528 6,689	Δ (w/w) 4,022 - 1,409 1,387 1,410 - 183 - 1,084 2,399 - 231 2,565 4,231 3,742	TCE 8,411 2,199 7,410 2,771 8,852 4,831 - 198 3,244 16,670 22,684 12,604 8,134 Eco scr	Δ (w/w 4,0° - 1,4° 1,3° - 26° - 1,1° 2,3° - 2,5° 4,2° 3,7° **rubber* Δ (w/w
MR/Han Route FC02 FC06 FC09 FC14 FC18 BACM11 BACM36 BACM47 One way BACM47 Triangulate FC02 + TC	kt 37 30 30 38 38 38 30 30 35 35 46 414	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA ARA→USAC→USG→ARA Description SPORE → OZ	140.0 115.0 130.0 90.0 120.0 125.0 102.5 130.0 1.0	10.0 -5.0 10.0 10.0 0.0 -5.0 0.0 0.0 0.0	Non Eco // TCE 5,480 - 766 - 3,637 - 717 4,385 - 960 - 3,412 215 - 13,118 19,152 9,439 4,681 Non Eco // TCE 2,080	Δ (w/w) 3,967 1,444 1,324 1,362 237 1,155 2,361 262 2,515 4,179 3,686	Non Eco / scrub TCE 6,595 1,135 - 5,494 921 7,169 - 2,583 - 1,700 2,328 - 15,121 21,081 10,801 6,502 Non Eco / scrub TCE 5,333	ber Δ (w/w) 3,952 1,469 1,299 1,294 320 1,176 2,268 290 2,488 4,153 3,668	7CE 7,506 584 6,049 1,440 6,996 3,593 - 1,626 1,377 15,015 21,113 11,528 6,689 Ecc. 7CE 4,618	Δ (w/w) 4,022 - 1,409 1,387 1,410 - 183 - 1,084 2,399 - 231 2,565 4,231 3,742	TCE 8,411 2,199 7,410 2,771 8,852 4,831 - 198 3,244 16,670 22,684 12,604 8,134 Eco scr TCE 7,318	Δ (w/w 4,0° - 1,4° 1,3° - 26° - 1,1° 2,3° - 2,5° 4,2° 3,7° rubber Δ (w/w
MR/Han Route FC02 FC06 FC09 FC14 FC18 BACM11 BACM36 BACM47 One way BACM47 Triangulate FC02 + TC	kt 37 30 30 38 38 38 30 30 35 35 40 kt 35 40	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA ARA→USAC→USG→ARA Description SPORE → OZ SKOREA → USWC	140.0 115.0 130.0 90.0 120.0 125.0 102.5 130.0 1.0	10.0 -5.0 10.0 10.0 0.0 -5.0 0.0 0.0 0.0	Non Eco // TCE 5,480 - 766 - 3,637 - 717 4,385 - 960 - 3,412 215 - 13,118 19,152 9,439 4,681 Non Eco // TCE 2,080 6,589	Δ (w/w) 3,967 1,444 1,324 1,362 237 1,155 2,361 262 2,515 4,179 3,686	Non Eco / scrub TCE 6,595 1,135 - 5,494 921 7,169 - 2,583 - 1,700 2,328 - 15,121 21,081 10,801 6,502 Non Eco / scrub TCE 5,333 9,026	ber Δ (w/w) 3,952 1,469 1,299 1,294 320 1,176 2,268 290 2,488 4,153 3,668 (Baltic ber Δ (w/w) 283 2,333	7CE 7,506 584 6,049 1,440 6,996 3,593 - 1,626 1,377 15,015 21,113 11,528 6,689 Ec 7CE 4,618 8,769	Δ (w/w) 4,022 - 1,409 1,387 1,410 - 183 - 1,084 2,399 - 231 2,565 4,231 3,742 Δ (w/w) 581 2,562	TCE 8,411 2,199 7,410 2,771 8,852 4,831 - 198 3,244 16,670 22,684 12,604 8,134 Eco scr TCE 7,318 10,768	Δ (w/w 4,0° - 1,4° 1,3° - 2,6° - 1,1° 2,3° - 2,5° 4,2° 3,7° 2 rubber Δ (w/w 37° 2,4°
MR/Han Route FC02 FC06 FC09 FC14 FC18 BACM11 BACM36 BACM47 One way BACM47 Triangulate FC02 + TC	kt 37 30 30 38 38 38 30 30 35 35 40 40	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA ARA→USAC→USG→ARA Description SPORE → OZ SKOREA → USWC JAPAN → SPORE	140.0 115.0 130.0 90.0 120.0 125.0 102.5 130.0 1.0 WS/LS 132.5 0.9	10.0 -5.0 10.0 10.0 0.0 -5.0 0.0 0.0 0.0 0.0	Non Eco // TCE 5,480 - 766 - 3,637 - 717 4,385 - 960 - 3,412 215 - 13,118 19,152 9,439 4,681 Non Eco // TCE 2,080 6,589 - 819	Δ (w/w) 3,967 1,444 1,324 1,362 237 1,155 2,361 262 2,515 4,179 3,686 / Baltic Δ (w/w) 533 2,520 1,565	Non Eco / scrub TCE 6,595 1,135 - 5,494 921 7,169 - 2,583 - 1,700 2,328 - 15,121 21,081 10,801 6,502 Non Eco / scrub TCE 5,333 9,026 1,363	ber Δ (w/w) 3,952 1,469 1,299 1,294 320 1,176 2,268 290 2,488 4,153 3,668 (Baltic ber Δ (w/w) 283 2,333 1,397	7CE 7,506 584 6,049 1,440 6,996 3,593 - 1,626 1,377 15,015 21,113 11,528 6,689 Ecc 7CE 4,618 8,769 1,073	Δ (w/w) 4,022 - 1,409 1,387 1,410 - 183 - 1,084 2,399 - 231 2,565 4,231 3,742 Δ (w/w) 581 2,562 1,602	TCE 8,411 2,199 7,410 2,771 8,852 4,831 - 198 3,244 16,670 22,684 12,604 8,134 Eco scr TCE 7,318 10,768 2,925	Δ (w/w 4,0° - 1,4° 1,3° - 26° - 1,1° 2,3° - 26° 2,5° 4,2° 3,7° rubber Δ (w/w 37° 2,4° 1,4°
MR/Han Route FC02 FC06 FC09 FC14 FC18 BACM11 BACM36 BACM37 BACM47 One way BACM47 Triangulate FC02 + TC	kt 37 30 30 38 38 38 30 30 35 35 40 kt 35 40	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA ARA→USAC→USG→ARA Description SPORE → OZ SKOREA → USWC JAPAN → SPORE SIKKA → JAPAN	140.0 115.0 130.0 90.0 120.0 125.0 102.5 130.0 1.0 WS/LS 132.5 0.9 0.3 85.0	10.0 -5.0 10.0 10.0 0.0 -5.0 0.0 0.0 0.0	Non Eco // TCE 5,480 - 766 - 3,637 - 717 4,385 - 960 - 3,412 215 - 13,118 19,152 9,439 4,681 Non Eco // TCE 2,080 6,589 - 819 - 1,897 -	Δ (w/w) 3,967 1,444 1,324 1,362 237 1,155 2,361 262 2,515 4,179 3,686 / Baltic Δ (w/w) 533 2,520 1,565	Non Eco / scrub TCE 6,595 1,135 - 5,494 921 7,169 - 2,583 - 1,700 2,328 - 15,121 21,081 10,801 6,502 Non Eco / scrub TCE 5,333 9,026 1,363 845 -	ber Δ (w/w) 3,952 1,469 1,299 1,294 320 1,176 2,268 290 2,488 4,153 3,668 (Baltic ber Δ (w/w) 283 2,333 1,397 458	7CE 7,506 584 6,049 1,440 6,996 3,593 - 1,626 1,377 15,015 21,113 11,528 6,689 Ec 7CE 4,618 8,769 1,073 287	Δ (w/w) 4,022 - 1,409 1,387 1,410 - 183 - 1,084 2,399 - 231 2,565 4,231 3,742 Δ (w/w) 581 2,562 1,602	TCE 8,411 2,199 7,410 2,771 8,852 4,831 - 198 3,244 16,670 22,684 12,604 8,134 Eco scr TCE 7,318 10,768 2,925 2,553	Δ (w/w 4,0' - 1,4' 1,3' 1,3' - 2(- 1,1(2,3' - 2,5' 4,2' 3,7' rubber Δ (w/w 37 2,4(1,4(1,4(1,4(1,4(1,4(1,4(1,4(1
MR/Han Route FC02 FC06 FC09 FC14 FC18 BACM11 BACM36 BACM47 One way BACM47 Triangulate FC02 + TC Average MR/Han Route FC07 FC10 FC11 FC12 FC17	kt 37 30 30 38 38 38 30 30 35 35 40 40	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA ARA→USAC→USG→ARA Description SPORE → OZ SKOREA → USWC JAPAN → SPORE	140.0 115.0 130.0 90.0 120.0 125.0 102.5 130.0 1.0 WS/LS 132.5 0.9 0.3 85.0 140.0	10.0 -5.0 10.0 10.0 0.0 -5.0 0.0 0.0 0.0 0.0	Non Eco // TCE 5,480 - 766 - 3,637 - 717 4,385 - 960 - 3,412 215 - 13,118 19,152 9,439 4,681 Non Eco // TCE 2,080 6,589 - 819 - 1,897 - 4,161	Δ (w/w) 3,967 1,444 1,324 1,362 237 1,155 2,361 262 2,515 4,179 3,686 / Baltic Δ (w/w) 533 2,520 1,565	Non Eco / scrub TCE 6,595 1,135 - 5,494 921 7,169 - 2,583 - 1,700 2,328 - 15,121 21,081 10,801 6,502 Non Eco / scrub TCE 5,333 9,026 1,363	ber Δ (w/w) 3,952 1,469 1,299 1,294 320 1,176 2,268 290 2,488 4,153 3,668 (Baltic ber Δ (w/w) 283 2,333 1,397	7CE 7,506 584 6,049 1,440 6,996 3,593 - 1,626 1,377 15,015 21,113 11,528 6,689 Ecc 7CE 4,618 8,769 1,073	Δ (w/w) 4,022 - 1,409 1,387 1,410 - 183 - 1,084 2,399 - 231 2,565 4,231 3,742 Δ (w/w) 581 2,562 1,602	TCE 8,411 2,199 7,410 2,771 8,852 4,831 - 198 3,244 16,670 22,684 12,604 8,134 Eco scr TCE 7,318 10,768 2,925	Δ (w/w 4,01 - 1,43 1,36 - 26 - 1,10 2,32 - 25 2,54 4,21 3,72 rubber Δ (w/w 37 2,40 1,46
MR/Han Route FC02 FC06 FC09 FC14 FC18 BACM11 BACM36 BACM37 BACM47 One way BACM47 Triangulate FC02 + TC	kt 37 30 30 38 38 30 30 35 35 40 40 35	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA ARA→USAC→USG→ARA Description SPORE → OZ SKOREA → USWC JAPAN → SPORE SIKKA → JAPAN	140.0 115.0 130.0 90.0 120.0 125.0 102.5 130.0 1.0 WS/LS 132.5 0.9 0.3 85.0	10.0 -5.0 10.0 10.0 0.0 -5.0 0.0 0.0 0.0 0.0 0.0 0.0	Non Eco // TCE 5,480 - 766 - 3,637 - 717 4,385 - 960 - 3,412 215 - 13,118 19,152 9,439 4,681 Non Eco // TCE 2,080 6,589 - 819 - 1,897 -	Δ (w/w) 3,967 1,444 1,324 1,362 237 1,155 2,361 262 2,515 4,179 3,686 / Baltic Δ (w/w) 533 2,520 1,565 247	Non Eco / scrub TCE 6,595 1,135 - 5,494 921 7,169 - 2,583 - 1,700 2,328 - 15,121 21,081 10,801 6,502 Non Eco / scrub TCE 5,333 9,026 1,363 845 -	ber Δ (w/w) 3,952 1,469 1,299 1,294 320 1,176 2,268 290 2,488 4,153 3,668 (Baltic ber Δ (w/w) 283 2,333 1,397 458	7CE 7,506 584 6,049 1,440 6,996 3,593 - 1,626 1,377 15,015 21,113 11,528 6,689 Ec 7CE 4,618 8,769 1,073 287	Δ (w/w) 4,022 - 1,409 1,387 1,410 - 183 - 1,084 2,399 - 231 2,565 4,231 3,742 Δ (w/w) 581 2,562 1,602 - 206	TCE 8,411 2,199 7,410 2,771 8,852 4,831 - 198 3,244 16,670 22,684 12,604 8,134 Eco scr TCE 7,318 10,768 2,925 2,553	Δ (w/w 4,01 - 1,43 1,36 - 2,6 - 1,10 2,32 - 2,54 4,21 3,72 Tubber Δ (w/w 37 2,40 1,46 - 38 93
MR/Han Route FC02 FC06 FC09 FC14 FC18 BACM11 BACM36 BACM47 One way BACM47 Triangulate FC02 + TC	kt 37 30 30 38 38 30 30 35 35 40 40 35 35 35	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA ARA→USAC→USG→ARA Description SPORE → OZ SKOREA → USWC JAPAN → SPORE SIKKA → JAPAN MEG → EAF	140.0 115.0 130.0 90.0 120.0 125.0 102.5 130.0 1.0 WS/LS 132.5 0.9 0.3 85.0 140.0	10.0 -5.0 10.0 0.0 -5.0 0.0 0.0 0.0 Δ (w/w) 0.0 0.0 -5.0 0.0	Non Eco // TCE 5,480 - 766 - 3,637 - 717 4,385 - 960 - 3,412 215 - 13,118 19,152 9,439 4,681 Non Eco // TCE 2,080 6,589 - 819 - 1,897 - 4,161	Δ (w/w) 3,967 1,444 1,324 1,362 237 1,155 2,361 262 2,515 4,179 3,686 / Baltic Δ (w/w) 533 2,520 1,565 247 1,135	Non Eco / scrub TCE 6,595 1,135 - 5,494 921 7,169 - 2,583 - 1,700 2,328 - 15,121 21,081 10,801 6,502 Non Eco / scrub TCE 5,333 9,026 1,363 845 - 6,604	ber Δ (w/w) 3,952 1,469 1,299 1,294 320 1,176 2,268 290 2,488 4,153 3,668 (Baltic ber Δ (w/w) 283 2,333 1,397 458 858	7CE 7,506 584 6,049 1,440 6,996 3,593 - 1,626 1,377 15,015 21,113 11,528 6,689 Ec 7CE 4,618 8,769 1,073 287 6,072	Δ (w/w) 4,022 - 1,409 1,387 1,410 - 183 - 1,084 2,399 - 231 2,565 4,231 3,742 Δ (w/w) 581 2,562 1,602 - 206 1,163	TCE 8,411 2,199 7,410 2,771 8,852 4,831 - 198 3,244 16,670 22,684 12,604 8,134 Eco scr TCE 7,318 10,768 2,925 2,553 8,121	Δ (w/w 4,01 - 1,43 1,36 - 26 - 1,10 2,32 - 25 2,54 4,21 3,72 Tubber Δ (w/w 37 2,40 1,46 - 38

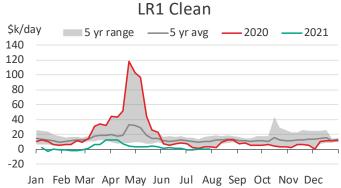
1,901

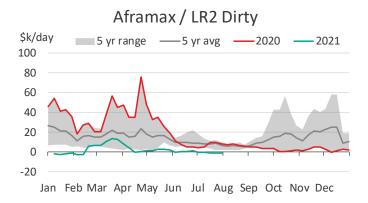
4,424

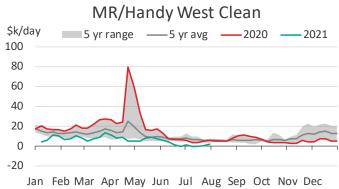

Average

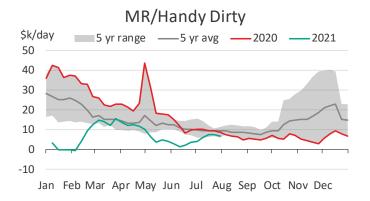

6,066


3,965




Average Spot Earnings (basis Non Eco / Baltic standard vessel)



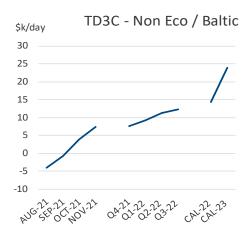


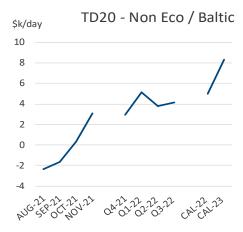


TD3c MEG → China 270kt

			Non Eco	o / Baltic	E	co
	WS	\$/t	No Scrubber	Scrubber	No Scrubber	Scrubber
Spot	31.45	5.73	- 5,443	754	673	5,396
AUG-21	32.75	5.97	- 4,066	2,363	2,027	6,926
SEP-21	35.75	6.52	- 791	5,715	5,249	10,207
OCT-21	40.25	7.34	3,998	10,594	9,989	15,016
NOV-21	43.50	7.93	7,429	14,090	13,399	18,475
Q4-21	43.75	7.98	7,533	14,161	13,535	18,561
Q1-22	44.98	8.20	9,191	15,851	15,109	20,185
Q2-22	46.63	8.50	11,239	17,822	17,085	22,102
Q3-22	47.17	8.60	12,273	18,766	18,012	22,960
CAL-22	49.37	9.00	14,258	20,816	20,054	25,051
CAL-23	57.60	10.50	23,956	30,217	29,479	34,251

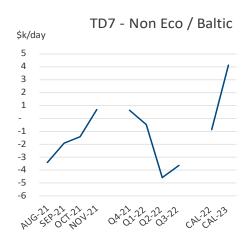
TD20 W. Africa \rightarrow UK Cont 130kt


			Non Eco	o / Baltic	E	СО
	WS	\$/t	No Scrubber	Scrubber	No Scrubber	Scrubber
Spot	55.00	7.77	- 1,416	2,723	4,020	7,053
AUG-21	55.00	7.77	- 2,334	2,275	4,011	7,158
SEP-21	56.00	7.91	- 1,679	2,986	4,607	7,808
OCT-21	59.75	8.44	344	5,073	6,572	9,828
NOV-21	65.00	9.18	3,071	7,846	9,292	12,594
Q4-21	65.00	9.18	2,956	7,704	9,201	12,457
Q1-22	68.70	9.70	5,118	9,893	11,299	14,629
Q2-22	65.51	9.25	3,811	8,531	9,945	13,241
Q3-22	65.51	9.25	4,160	8,816	10,218	13,500
CAL-22	67.63	9.55	5,040	9,742	11,136	14,446
CAL-23	72.24	10.20	8,347	12,836	14,243	17,485

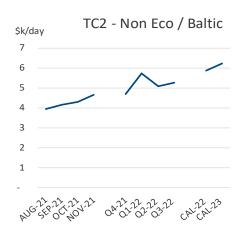

TD8 Kuwait → Singapore 80kt

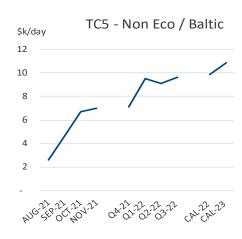
		0 .	Non Eco	o / Baltic	E	co
	WS	\$/t	No Scrubber	Scrubber	No Scrubber	Scrubber
Spot	94.44	11.92	5,604	9,632	9,233	12,514
AUG-21	88.00	11.11	3,350	7,835	7,258	10,713
SEP-21	90.00	11.36	4,127	8,666	8,000	11,536
OCT-21	91.75	11.58	4,818	9,419	8,656	12,287
NOV-21	96.75	12.21	6,451	11,098	10,218	13,959
Q4-21	96.75	12.21	6,353	10,981	10,196	13,820
Q1-22	97.46	12.30	6,836	11,482	10,617	14,335
Q2-22	91.92	11.60	5,336	9,929	9,059	12,778
Q3-22	95.09	12.00	6,650	11,179	10,290	14,016
CAL-22	96.51	12.18	6,925	11,499	10,612	14,338
CAL-23	101.03	12.75	9,188	13,556	12,658	16,370

TD7 N. Sea → UK Cont 80kt

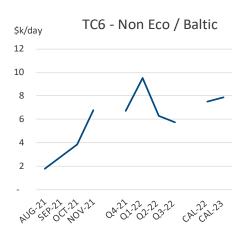

				Non Eco / Baltic				Eco			
	WS	\$/t	S	No crubber	S	crubber	s	No crubber	s	crubber	
Spot	95.63	5.62	-	5,589	-	5,589	-	4,417	-	4,417	
AUG-21	100.00	5.88	-	3,430	-	3,430	-	1,790	-	1,790	
SEP-21	103.00	6.06	-	1,926	-	1,926	-	250	-	250	
OCT-21	104.00	6.12	-	1,438	-	1,438		276		276	
NOV-21	108.00	6.35		671		671		2,378		2,378	
Q4-21	108.00	6.35		617		578		2,313		2,313	
Q1-22	105.44	6.20	-	500	-	500		1,197		1,197	
Q2-22	96.94	5.70	-	4,574	-	4,574	-	2,900	-	2,900	
Q3-22	98.64	5.80	-	3,647	-	3,647	-	1,978	-	1,978	
CAL-22	104.25	6.13	-	858	-	858		807		807	
CAL-23	113.10	6.65		4,113		4,113		5,740		5,740	

TD8 - Non Eco / Baltic

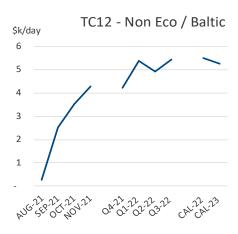

10
9
8
7
6
5
4
3
2
1
0
Non Eco / Baltic


TC2 UK Cont \rightarrow US AC 37kt

			Non Eco	o / Baltic	E(СО
	WS	\$/t	No Scrubber	Scrubber	No Scrubber	Scrubber
Spot	140.00	28.64	5,480	6,595	7,506	8,411
AUG-21	131.75	26.96	3,930	5,171	6,291	7,230
SEP-21	133.00	27.21	4,165	5,421	6,523	7,478
OCT-21	133.75	27.37	4,316	5,589	6,672	7,644
NOV-21	135.50	27.72	4,646	5,931	6,997	7,983
Q4-21	136.00	27.83	4,676	5,942	7,030	8,002
Q1-22	85.29	17.45	5,715	7,000	8,053	9,047
Q2-22	82.36	16.85	5,097	6,367	7,414	8,398
Q3-22	82.60	16.90	5,276	6,530	7,577	8,557
CAL-22	85.09	17.41	5,863	7,129	8,170	9,158
CAL-23	84.80	17.35	6,219	7,428	8,465	9,433


TC5 MEG → Japan 55kt

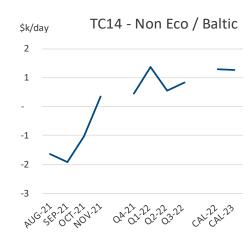
			Non Eco	o / Baltic	Eco		
	WS	\$/t	No Scrubber	Scrubber	No Scrubber	Scrubber	
Spot	85.00	9.13	1,104	4,213	2,794	5,555	
AUG-21	93.00	9.99	2,631	6,093	4,538	7,447	
SEP-21	101.50	10.90	4,569	8,072	6,457	9,433	
OCT-21	111.00	11.92	6,714	10,266	8,584	11,640	
NOV-21	112.00	12.03	6,984	10,571	8,848	11,947	
Q4-21	113.00	12.14	7,122	10,695	8,994	12,044	
Q1-22	234.64	25.20	9,501	13,087	11,338	14,468	
Q2-22	229.52	24.65	9,105	12,650	10,910	14,040	
Q3-22	232.31	24.95	9,668	13,165	11,427	14,563	
CAL-22	235.10	25.25	9,851	13,382	11,636	14,772	
CAL-23	238.36	25.60	10,875	14,247	12,538	15,661	


TC6 Skikda → Lavera 30kt

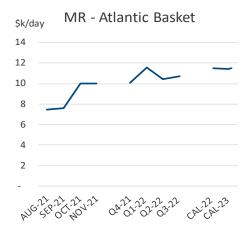
			Non Eco	o / Baltic	Eco		
	WS	\$/t	No Scrubber	Scrubber	No Scrubber	Scrubber	
Spot	115.00	23.53	- 766	1,135	584	2,199	
AUG-21	127.00	25.98	1,750	3,867	3,488	5,164	
SEP-21	131.00	26.80	2,788	4,930	4,500	6,205	
OCT-21	135.00	27.62	3,821	5,993	5,509	7,243	
NOV-21	147.00	30.08	6,751	8,945	8,442	10,201	
Q4-21	147.00	30.08	6,705	8,889	8,402	10,136	
Q1-22	50.34	10.30	9,535	11,729	11,218	12,991	
Q2-22	45.94	9.40	6,308	8,476	7,985	9,740	
Q3-22	44.97	9.20	5,719	7,857	7,380	9,128	
CAL-22	47.41	9.70	7,493	9,652	9,162	10,925	
CAL-23	47.41	9.70	7,895	9,957	9,526	11,252	

TC12 WCI → Japan 35kt

			Non Eco	o / Baltic	Eco				
	WS	\$/t	No Scrubber	Scrubber	No Scrubber	Scrubber			
Spot	85.00	15.41	- 1,897	845	287	2,553			
AUG-21	100.00	18.13	277	3,121	2,456	4,807			
SEP-21	115.00	20.85	2,514	5,392	4,676	7,055			
OCT-21	121.50	22.03	3,532	6,451	5,678	8,090			
NOV-21	126.50	22.93	4,291	7,238	6,429	8,865			
Q4-21	126.50	22.93	4,229	7,164	6,378	8,790			
Q1-22	137.89	25.00	5,379	8,325	7,499	9,935			
Q2-22	133.48	24.20	4,918	7,830	7,012	9,420			
Q3-22	135.69	24.60	5,427	8,300	7,486	9,861			
CAL-22	137.07	24.85	5,509	8,410	7,587	9,985			
CAL-23	131.27	23.80	5,250	8,020	7,234	9,524			



Clean Wet FFAs


TC14 USG → UK Cont 38kt

			Non Eco	o / Baltic	Eco		
	WS	\$/t	No Scrubber	Scrubber	No Scrubber	Scrubber	
Spot	90.00	16.87	- 717	921	1,440	2,771	
AUG-21	85.00	15.93	- 1,648	248	890	2,325	
SEP-21	83.00	15.55	- 1,915	3	606	2,066	
OCT-21	88.00	16.49	- 1,033	912	1,474	2,958	
NOV-21	96.00	17.99	341	2,305	2,844	4,351	
Q4-21	97.00	18.18	452	2,398	2,961	4,446	
Q1-22	97.39	18.25	1,364	3,328	3,854	5,372	
Q2-22	91.78	17.20	547	2,488	3,018	4,522	
Q3-22	92.58	17.35	837	2,752	3,288	4,785	
CAL-22	95.78	17.95	1,308	3,241	3,768	5,278	
CAL-23	92.85	17.40	1,284	3,130	3,677	5,156	

MR - Atlantic Basket

_	\$/day
Spot	9273
AUG-21	7,474
SEP-21	7,620
OCT-21	10,019
NOV-21	10,045
Q4-21	10,046
Q1-22	11,583
Q2-22	10,440
Q3-22	10,745
CAL-22	11,527
CAL-23	11,494

FFA Comments

Braemar ACM Tanker Weekly 30 July 2021 | Week 30

TD3c: TD3c failed to buck the trend it has set this month, with rates continuing to move sideways. In fact, TD3c has had its flattest month in recent memory, with the difference between the high and the low of the month for BITR being only 0.52ws. As you would expect, it was hardly a stellar week on the paper as levels continue to be eroded down the curve. Aug was initially paid up from 34 – 34.5ws. However, it proceeded to traded down to close the week at 33ws (-3,283 TCE). Sep was sold from 38ws – 36ws, Oct sold 41.5ws – 40.75ws, and Dec saw a sole print at 47.5ws. Whilst Q4-21 traded up from 44ws to 44.5ws, it was traded last at 43.75ws (\$7,959 TCE). Q1-22 traded lower as part of a spread vs. Oct-21, and it was sold down from \$8.265/t – \$8.179/t. Cal-22 fails to trade this week, but closed the week valued at \$9/t, giving a TCE of \$14,558 a day on Baltic parameters.

Josh Smithson

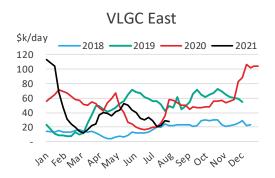
TC2: TC2 finally sparked back into life this week on the physical after being down in the doldrums for some time. A flurry of cargos to start the week meant that owners were fairly easily able to push the rates to 130ws. It looked like this might be as far as it goes, but after a mid-week lull, we closed the week with 140ws as the last done at the time of writing. The paper market has of course traded up on the back of this, but it seems that traders are not getting too carried away with themselves as the paper curve lags below the current spot. Aug was paid up from 126ws to 132ws. The Sep contract fluctuated somewhat between 130ws and 133.5ws, with 133ws as the last done price here. Q4-21 contract jumped from 132ws to 135ws, and we saw continued interest in the deferred trading this week, both as a combo and a spread with TC14: Q1-22 traded at \$17.45/t (versus TC14 at \$18.20/t), Q2-22 at \$16.85/t (versus TC14 at \$17.20/t) and finally, the combo TC2+TC14 for the Oct-21-Sep-22 contract printed this week at \$17.25/t (up by 25c on previous), with the TC2 leg used here at \$17.00/t. All this means we closed the week Cal-22 valued at \$17.41/t.

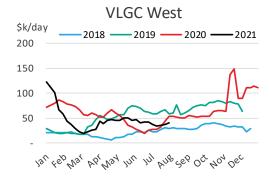
Adam Clitheroe

TC5: A much busier week for the TC5 as we emerge from the Eid celebrations. LR1s being firmer at 90ws helped to egg on an improvement across the curve. August sees over 350kt print this week, as an open of 95ws is quickly paid up to 99ws before witnessing a mid-week sell-off back down to 93ws on close, with a smalls pit stop at the weekly low of 92.5ws. September sees a little more love this week as 104ws on open remain fairly consistent before a softer close of 101.5ws is witnessed. Q4 sees moderate activity as 110ws quickly turns into 114ws before closing out the week at 113ws. The Sep-Dec strip makes an appearance at 110.5ws. Cal-22 starts the week trading at \$25/, which gives us earnings of \$10,139/day before closing out the week marginally up at \$25.25 in a reasonable size, which gives us earnings of \$10,250/day off Baltic parameters.

Joseph Robert McCarthy

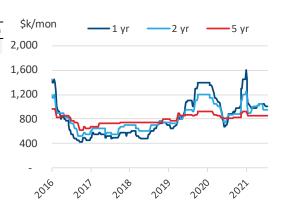
TC14: Decent week for TC14 as ta clean routes got much busier, and rates have risen significantly. TC2 has been more of a beneficiary than TC14, but the TC14 spot still managed to rally more than 11ws to end the week at 91.5ws. The paper market has seen a solid level of activity as well. There was more than 700k mt dealt in the market. Aug contract converged with the spot and traded up from 78ws to 85ws last. Sep printed at 80-83ws, while Q4 dealt at 97.5ws. Q1-22 traded at \$18.2/t as a spread vs. TC2 Q1-22 at +75 cents, while Q2-22 printed at \$17.2/t as a part of a +35 cents spread vs. TC2 Q2-22. Oct-21-Sep22 strip traded a couple of times at \$17.5/t, as part of the TC14+TC2 combo strip, which traded at \$17.25/t. Finally, Calendar 22 ends the week valued at \$17.95/t.


Damian Viskovic



VLGC Spot Market

		3	0-Jul-21	2	3-Jul-21
Cargo (k/tonnes)	ROUTE	\$/t	TCE (\$/day)	\$/t	TCE (\$/day)
44	RAS TAN / CHIBA	43.4	28,210	43.3	28,936
44	HOUSTON / FLUSHING	45.0	40,817	42.0	37,326
44	HOUSTON / CHIBA	83.0	36,510	76.7	32,403
Average			35,179		32,888


Basis round voyage, 'modern vessel'

VLGC Time Charter Assessment (\$/month)

1 Yı	r	2 Y	r	5 Yr		
TC	∆ (w/w)	TC	∆ (w/w)	TC	∆ (w/w)	
1.000.000	_	950.000	_	850.000	_	

LPG FFA

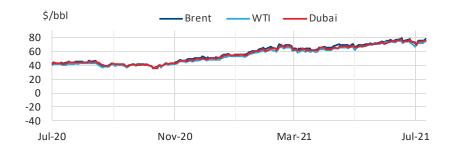
BLPG MEG → Japan 44kt

DLI GIVIL	-O → Japan 44
_	\$/t
Spot	43.36
AUG-21	49.00
SEP-21	53.50
OCT-21	56.00
NOV-21	56.50
Q4-21	56.50
Q1-22	55.50
Q2-22	53.50
Q3-22	54.00
CAL-22	54.50
CAL-23	50.00

A more muted affair to report upon this week for the LPG FFA sector. We saw an array of fixtures in the West, attracting premiums over the East, and this is what drove the front markets on BLPG1. Much of the focus was on Aug, trading well above spot, Aug traded at 49.5-50.5-51-50.5(\$/t), with value at \$49/t, having seen low 40s fixed for the spot rate. Sep saw a solitary trade at \$53.5/t, the Q4 traded at \$55/t, and \$56.5/t with value remaining there whilst the Q1 traded at 55-56-55-55.5 (\$/t). Cal-22 also traded, trading at \$54/t midweek, though the value was seen at \$54.5/t on the close Friday. Cal-22

value at \$54.5/t represented a TCE of \$36,332 per day (\$1.1m per month), and the Cal-22+23 strip was valued at \$52.25/t, giving us a TCE of \$34,331 per day (\$1m per month).

Sam Mitchell


Bunker Prices

		HSFO				MGO		_		VLSFO	
Port	\$/t /	\(\mathbb{w}\)	1 yr avg.	\$/t		(w/w)	1 yr avg.		\$/t	Δ (w/w)	1 yr avg.
Rotterdam	417.25 🦣	3.8%	323.5	590	•	2.9%	449.2		530	1 2.7%	405.2
Singapore	433 🦣	4.8%	343.9	597	1	2.4%	460.8		554	1 .9%	432.1
Houston	418 🦣	3.8%	326.7	631	•	2.7%	481.8		526	1 2.1%	408.9
Fujairah	433 🏚	5.0%	330.2	650	•	3.5%	519.7		545	1.5%	427.8
Gibraltar	431.75 🦣	3.7%	348.3	622	2	3.8%	476.8		533	1 .9%	418.5
Piraeus	449.25 🦣	3.5%	355.9	-	-	-	-		-		-
Tokyo	546.25 🦣	3.0%	445.6	754	ı 🛖	2.3%	573.0		577	1 2.3%	458.0

Commodity Prices

	Cr	Crude						
	\$/bbl	Δ (w/w)						
Brent	77.43	3 .4%						
Dubai	75.63	1.9%						
WTI	73.93	2.3%						

Exchange Rates

Currency	1 US\$ =		Δ (w/w)
Aus Dollar	\$ 0.73	4	-\$0.00
British Pound	£0.72	4	-£0.008
Chinese Yuan	¥6.46	4	¥-0.020
Euro	€ 0.84	4	-€ 0.007
Japanese Yen	¥109.70	4	-¥0.840
Korean Won	₩1,151.41	4	-₩0.110
Saudi Riyal	ر.س. 3.75	4	ر.س. 0.001-

Interest Rates

About us

About Braemar ACM Shipbroking

Braemar ACM Shipbroking is one of the world's largest shipbroking companies. Headquartered in London, with around 450 employees worldwide, Braemar ACM Shipbroking has broking Offices in the UK, US, Australia, China, Singapore, Greece, Switzerland, Brazil, Dubai and India. Braemar ACM Shipbroking offers broking in Tankers, Offshore, Containers, Dry Bulk, Gas, Chemicals, Sale and Purchase, Newbuilding, Dry/Wet Freight and Coal Derivatives, Ship Recycling, Research and Consultancy and Valuations. Braemar ACM Shipbroking is a member of The Baltic Exchange, Institute of Chartered Shipbrokers, the London Tanker Brokers' Panel, Worldscale Association, Intertanko, Intercargo and BIMCO.

Braemar ACM Shipbroking was formed in 2014 following the merger of two shipping services companies: Braemar Shipping Services Plc (established 1972 as Seascope) and ACM Shipping Plc (established 1982) Braemar Shipping Services plc is listed on the London Stock Exchange.

Braemar ACM Shipbroking Research

Email: research@braemar.com Phone: UK +44 203 142 4200

Singapore: +65 6579 1088

Website: www.braemaracm.com

Disclaimer

The information contained within this report is given in good faith based on the current market situation at the time of preparing this report and as such is specific to that point only. While all reasonable care has been taken in the preparation and collation of information in this report Braemar Shipping Services Plc (and all associated and affiliated companies) does not accept any liability whatsoever for any errors of fact or opinion based on such facts

Some industry information relating to the shipping industry can be difficult to find or establish. Some data may not be available and may need to be estimated or assessed and where such data may be limited or unavailable subjective assessment may have to be used.

No market analysis can guarantee accuracy. The usual fundamentals may not always govern the markets, for example psychology, market cycles and external events (such as acts of god or developments in future technologies) could cause markets to depart from their natural/usual course. Such external events have not been considered as part of this analysis. Historical market behaviour does not predict future market behaviour and shipping is an inherently high risk business. You should therefore consider a variety of information and potential outcomes when making decisions based on the information contained in this report.

All information provided by Braemar Shipping Services Plc is without any guarantee whatsoever. Braemar Shipping Services Plc or any of its subsidiaries or affiliates will not be liable for any consequences thereof.

This report is intended solely for the information of the email recipient account and must not be passed or divulged to any third parties whatsoever without the written permission of Braemar Shipping Services Plc. Braemar Shipping Services Plc accepts no liability to any third parties whatsoever

If permission is granted, you must disclose the full report including all disclaimers, and not selected excerpts which may be taken out of context.

Assumptions used in this report

	Vessel S	Vessel Specs TCE earnings calculation assumptions basis Baltic (Non Eco) / Eco										
		Spe	eed		Bunker Consumption				Port Days			
Uncoated	Typical DWT ('000)	Typical capacity ('000 cbm)	Avg exist. fleet > 15 yrs ldt	Ballast (kts)	Laden (kts)	Ballast (t/d)	Laden (t/d)	Load (t/d)	Dsch (t/d)	Wait (t/d)	Load (d)	Dsch (d)
VLCC	>200	n/a	a 42,500	12.5/ 12	13/13	53/ 36	70/ 55	20/20	110/ 70	10/10	2/2.5	2/2.5
Suezmax	124.5 - 200	n/a	a 23,000	12.5/ 13	13/13	44/30	53/40	12/7.5	68/40	10/10	2/2.5	2/2.5
Aframax	84.5 - 124.5	n/a	a 17,000	12.5/ 13	13/ 13	36/28	43/ 33	10/6	55/30	5/8	2/2.5	2/2.5
Panamax	53.5 - 84.5	60 - 90	13,500	12.5/ 13	13/ 13	44/30	53/40	12/7.5	68/40	10/ 10	2/2.5	2/2.5
Coated												
LR2	84.5 - 124.9		17,000	12.5/13	13/ 13	36/28	43/ 33	10/6	42.5/30	5/8	2/2.5	2/2.5
LR1	53.5 - 84.5	60 - 90	0 13,500	12.5/13	13/ 13	28/ 25	33/ <mark>28</mark>	5/ <mark>5</mark>	32/17.5	5/ 5	2/2.5	2/2.5
MR	41 - 56.5	46 - 60	0 10,000	12.5/13	13/ 13	22.5/19	28/ 22	5/3.5	25/ 12	5/ 5	2/2.5	2/2.5
Handy	25 - 41	29 - 46	9,000	12.5/13	13/ 13	22.5	28	5	25	5	2/2.5	2/2.5