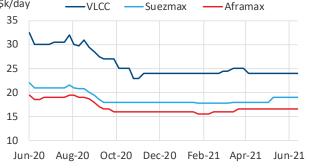


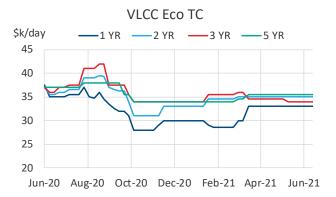
Weekly Tanker Market Report

Week 27

Published: 9 July 2021

Contents	Page
Time Charter Assessments	2 - 4
Recent Period Fixtures	5
Spot Earnings	6 - 8
Dirty Wet FFAs	9
Clean Wet FFAs	10 - 11
FFA Comments	12
LPG Market	13
Prices and Indices	14




Uncoated Tankers

Timecharter assessments - crude

		1 Y	r	2 Yı	•	3 Yı	•	5 Yr	1
	Vessel	TC	Δ	TC	Δ	TC	Δ	TC	Δ
	Non Eco	24,000	-	27,000	-	28,000	-		
VLCC	Eco	33,000	-	35,000	-	34,000	-	35,500	-
	Eco scrubber					36,000	-	37,500	-
	Non Eco	19,000	-	20,000	-	22,000	-		
Suezmax	Eco	21,000	-	24,000	-	25,000	-	25,500	-
	Eco scrubber					26,000	-	26,500	-
	Non Eco	16,500	-	18,500	-	19,500	-		
Aframax	Eco	18,500	-	20,500	-	21,500	-	22,000	-
	Eco scrubber					22,500	-	23,000	-

Non Eco 1 Yr TC \$k/day VLCC Suezmax -Aframax 35 30 25 20 15 10

VLCC Eco vs Non Eco 1 Yr TC

VLCC Eco vs Eco Scrubber 3 Yr TC

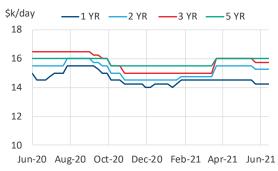
The dirty spot market remains very weak which is reflecting onto the period market. We saw 1 eco vlcc done for 12 mos but with a lower front end rate of usd 16,000 pdpr for the first 2 mos followed bt usd 33,000 for the balance.

On the Suezmax we have seen a charter fix 2 x eco scrubber fitted vessel for 18 months at usd 26,500, and a shorter term deal at usd 16,000. On the Aframax's we saw one owner/operator fix an 08 built afra 12 months at usd 17,250 and now charterers are starting to show interest on pushing numbers as rates and general interest slowly edge up.

Coated Tankers

Timecharter assessments - clean

		1 Yr		2 Yı	<u>r </u>	3 Yı		5 Yı	•
	Vessel	TC	Δ	TC	Δ	TC	Δ	TC	Δ
	Non Eco	17,500	-	19,500	-	20,500	-		
LR2	Eco	21,000	-	23,000	-	24,000	-	24,750	-
	Eco scrubber					25,250	-	26,000	-
	Non Eco	14,250	-	15,500	-	16,000	-		
LR1	Eco	15,250	-	16,500	-	17,000	-	17,000	-
	Eco scrubber					17,750	-	17,750	-
	Non Eco	12,750	-	13,000	-	14,000	-		
MR	Eco	14,250	-	15,250	-	15,750	-	16,000	-
	Eco scrubber					16,500	-	16,500	-
Handy	Non Eco	11,500	-	12,500	-	13,000	-	·	


Non Eco 1 Yr TC

MR Eco vs Non Eco 1 Yr TC

MR Eco TC

MR Eco vs Eco Scrubber 3 Yr TC

The clean market continues to remain lacklustre with period fixtures few and far between.

Spot rates show no signs of recovering yet despite the summer holidays being virtually upon us and hopes of air travel opening soon, however jet demand has failed to materialise so far.

The market needs some sustained demand across the products spectrum before TC rates are likely to turn a corner and begin to interest owners or charterers in anything other than short term deals to cover the dog days of summer.

Long term deals remain sporadic and invariably with delivery beyond the traditional summer break and into late Q3 / Q4. Demand has to return at some point as the vaccine rollout continues and countries begin to unwind their restrictive policies on travel and movement, when that happens and supply/demand flow balance changes then we anticipate seeing a movement on not only the spot but the period market.

Time Charter

Braemar ACM Tanker Weekly 9 July 2021 | Week 27

Time charter forward curve

		1 Yr		2 Yr	2 Yr 3 Yr			4 Yr		5 Yr	
Vessel		TC	Δ	TC	Δ	TC	Δ	TC	Δ	TC	Δ
VLCC	Non Eco	24,000	-	30,000	-	30,000	-				
VICC	Eco	33,000	-	37,000	-	32,000	-	37,000	-	38,500	-
Suezmax	Non Eco	19,000	-	21,000	-	26,000	-				
Juezillax	Eco	21,000	-	27,000	-	27,000	-	26,000	-	26,500	
Aframax	Non Eco	16,500	-	20,500	-	21,500	-				
Allalliax	Eco	18,500	-	22,500	-	23,500	-	22,500	-	23,000	
LR2	Non Eco	17,500	-	21,500	-	22,500	-				
LINZ	Eco	21,000	-	25,000	-	26,000	-	25,500	-	26,250	-
104	Non Eco	14,250	-	16,750	-	17,000	-				
LR1	Eco	15,250	-	17,750	-	18,000	-	17,000	-	17,000	-
MR	Non Eco	12,750	-	13,250	-	16,000	-				
IVIN	Eco	14,250	-	16,250	-	16,750	-	16,250	-	16,500	-
Handy	Non Eco	11,500	-	13,500	-	14,000	-				

Explanation: if a Suezmax is fixed for a two year TC at a two year rate of \$31k and sub-let during year one at a one year rate of \$37k, then only \$25k is needed in year two to break-even over the two years. So year one is \$37k, year two is \$25k. If the three year rate is \$26k, this means that \$16k is needed in year three to break even on a three year TC where year one was \$37k and year two was \$25k. And so on.

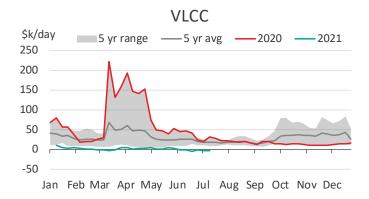
Period Fixtures

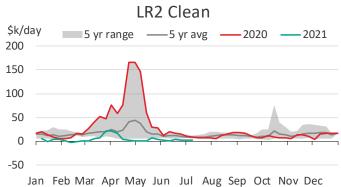
Braemar ACM Tanker Weekly 9 July 2021 | Week 27

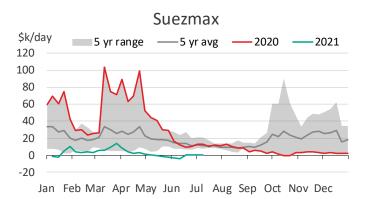
w/e 09/07/2021							
Charterer	Vessel	DWT	Build	Period	Rate	Laycan	Notes
LMCS	AYSE C (KOCH RELET)	158	2020	18 MOS	\$26,500	Q3	DTY DEL INDIA SCRUBER FITTED
LMCS	ZEYNEP (KOCH RELET)	158	2020	18 MOS	\$26,500	Q3	DTY DEL INDIA SCRUBER FITTED
w/e 02/07/2021							
Charterer	Vessel	DWT	Build	Period	Rate	Laycan	Notes
CHEVRON	KAPODISTRIAS21	158	2021	3 YRS	\$27,500	JULY	DTY DEL F.EAST SCRUBBER FITTED
CHEVRON	MARAN SOLON	157	2021	STTC	RNR	JULY	DTY DEL AG SCRUBBER FITTED
VITOL	CRUDE ZEPHYRUS	156	2021	1-3 MOS	\$13,000	JULY	DTY DEL F.EAST
DAKOTA TANKERS	BARONESS	2011	105	12 MOS	RNR	JULY	DTY DEL USWC
NIDAS	PYXIS THETA	51	2013	6+6 MOS	\$13,250/\$15,000	JULY	CPP DEL GIB IMO 2/3
STENA	MAERSK CAYMAN	50	2018	18-23 MOS	\$14,750	JULY	CPP DEL UKC IMO 2/3
w/e 25/06/2021							
Charterer	Vessel	DWT	Build	Period	Rate	Laycan	Notes
VITOL	KANARIS 21	156	2021	3-6 MOS	\$14,500	JUNE	DTY DEL F.EAST SCRUBBER FITTED
VITOL	CAPTAIN LYRITSIS	156	2021	3-6 MOS	\$14,500	JUNE	DTY DEL SPORE SCRUBBER FITTED
TEEKAY	OSGOOD	109	2008	18-24 MOS	\$17,250	JULY	CPP DEL MED (DTY OPTIONS)
косн	PACIFIC SENTINEL	50	2019	30-90 DAYS	FIRST 30 DAYS AT \$9,000, 31-60 DAYS AT \$12,000, 61-90 DAYS AT \$15,000	JUNE	CPP DEL BALBOA
w/e 18/06/2021							
Charterer	Vessel	DWT	Build	Period	Rate	Laycan	Notes
CLEARLAKE	ATHENIAN FREEDOM	299	2013	30-90 DAYS	FIRST 30 DAYS \$8,000 \$9,000 THEREAFTER	JUNE	DTY DEL SPORE STORAGE
CHEVRON	SEA JAGUAR	114	2011	12+6 MOS	\$16,500/\$20,000	JUNE	DTY DEL MED
VITOL	IONIC ANASSA	114	2016	24+12 MOS	\$23,500/\$27,000	JUNE	DTY DEL BLACK SEA SCRUBBER-FITTED
TRAFIGURA	ANTONIS	113	2017	3-6 MOS	\$10,250/\$13,250	JUNE	DTY DEL BALTIC
СРТА	DONG-A KRIOS	49	2015	6+6 MOS	\$13,000/RNR	JUNE	CPP DEL USG IMO 2/3

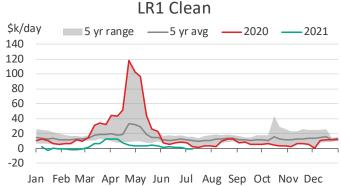
Spot Market

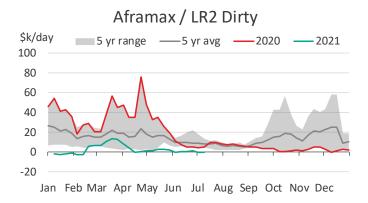
Braemar ACM *Tanker Weekly* 9 July 2021 | Week 27

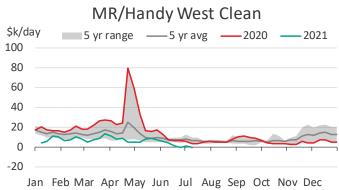

VLCC					Non Eco	/ Baltic	Non Eco		E	со	Eco sc	rubber
Route	kt	Description	WS/LS	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)
Round voya	ge											
TD01	280	$MEG \to USG$	18.3	-0.2	- 11,061	28	- 3,955	409	- 4,057	34	1,332	323
TD02	260	$MEG \to SPORE$	32.2	-0.2	- 1,619	- 227	5,809	91	3,584	- 219	9,788	46
TD03c	270	$MEG \to CHINA$	31.4	-1.1	- 5,076	- 124	1,546	159	981	- 99	6,027	117
TD15	260	$WAFR \to CHINA$	33.6	-0.4	- 508	- 13	6,539	288	6,535	6	11,833	233
TD22	270	USG → CHINA	4.0	-0.1	1,487	36	8,706	296	8,659	- 8	13,993	184
Triangulated												
TD01 + TD2		MEG→USG→CHINA→AC			8,522		15,919	118	15,291		21,044	62
TD01 + TD1		MEG→USG→WAF→CHII	NA→AG		297		7,464	278	7,219		12,733	219
TD03c one	way	WCI→AG→CHINA			7,610	- 180	14,366	109	12,084	- 145	17,530	87
Average					- 43		7,049		6,287		11,785	
Suezma	X				Non Eco	/ Baltic	Non Eco scrul		E	со	Eco sci	rubber
Route	kt	Description	WS/LS	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)
Round voya	age											
TD06	135	$BSEA \to MED$	59.9	-0.1	- 2,052	- 93	2,836	105	1,106	- 115	5,292	54
TD20	130	$WAF \ \to \ UKC$	49.4	-3.1	- 4,030	- 145	293	30	1,380	- 187	4,548	
BACM24	130	$WAF \to MED$	52.5	0.0		- 2,115	4,799		5,059	- 2,102	9,072	
TD23	140	$MEG \to MED$	28.2	0.0	- 16,712		- 10,901		- 11,071	- 1,166	- 6,618	
BACM32	130	MEG → CHINA	55.0	0.0	1,105	19	6,428	246	7,075	32	10,954	197
BACM33	130	AG → ECI	62.5	0.0	5,037		10,708	293	9,777		14,308	234
BACM39	130	WAF → USAC	50.0	0.0	- 1,181	- 1,612	3,355	- 1,428	4,383	- 1,652	7,698	- 1,518
Triangulated BACM31		WCl→MEG→MED			- 16,194	- 1,386	- 10,126	- 1,060	- 10,717	- 1,383	- 5,967	- 1,128
Average					- 4,304		924		874		4,911	
Aframax	x/LR2	Dirty			Non Eco	/ Baltic	Non Eco scrui		E	со	Eco sci	rubber
Route	kt	Description	WS/LS	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)
TD07		· ·	93.1	-11.9		- 2,697		- 2,697	- 4,989			
TD07	80 80	ECUK → CONT MEG → SPORE	89.2	-0.8	4,186		8,868		7,795	, ,	11,609	, .
BACM34	95	MEG → SPORE	90.0	0.0	10,435		14,857	229	12,819		16,667	199
TD09	70	CARIBS → USG	77.5	-2.5	- 6,194		- 2,753		- 3,234		- 492	
TD14	80	SERIA → SYDNEY	82.2	-0.3	41		4,675		3,755		7,516	
TD17	100	BALTIC → CONT	70.0	-2.5	3,639	478	3,680	480	6,101	418	6,133	419
TD19	80	$EMED \to WMED$	92.8	7.8	4,468	2,315	8,503	2,479	7,104	2,296	10,553	2,436
TD25	70	$USG \to MED$	69.6	-2.1	- 6,519	- 330	- 1,853	- 162	- 2,613	- 358	1,083	- 225
Average					491		3,732		3,342		6,010	
Panama	ax/I R	1 Dirtv			Non Eco	/ Baltic	Non Eco		E	co	Eco sc	rubber
Route	kt	-	WS/LS	A fraction			SCTU					
TD10		Description CARIBS → USAC	100.0	∆ (w/w) -5.0	TCE 3,457	Δ (w/w) - 961	TCE 5,447	Δ (w/w) - 880	<i>TCE</i> 4,386	Δ (w/w) - 970	<i>TCE</i> 6,198	Δ (w/w) - 896
TD10	50 55	ARA → USG	105.0	0.0	6,798	196	8,964	284	8,359	180	10,242	256
TD12	50	CARIBS → USG	97.5	0.0	1,177		3,301		2,068		4,012	
BACM06	55	WMED → USG	105.0	0.0	9,342	168	12,140	269	10,951	152	13,421	241
Average					5,194		7,463		6,441		8,468	
MR/Han	dy Di	rty			Non Eco	/ Baltic	Non Eco scrui		E	co	Eco sc	rubber
Route	kt	Description	WS/LS	Δ (w/w)	TCE	Δ (w/w)	TCE	∆ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)
TD16	30	BSEA → MED	165.0	5.0	8,032	1,055	10,066	1,228	10,248	1,056	11,862	1,193
TD18	30	BALTC → CONT	130.0	0.0	4,189	1,916	5,978	1,988	6,421	1,899	7,732	1,193
BACM18	30	CONT → MED	135.0	10.0	- 1,287	1,575	1,168	1,675	368	1,563	2,455	1,648
BACM22	44	BSEA → MED	115.0	10.0	10,258	1,787	12,669	1,987	11,859	1,791	13,922	1,962
					·	, .			·			
Average					5,298		7,470		7,224		8,993	

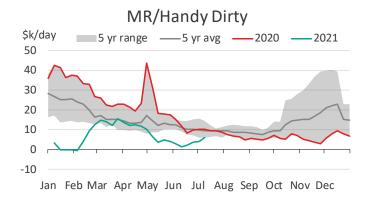


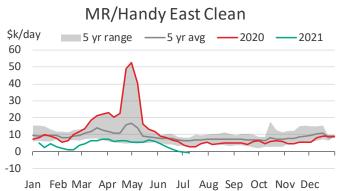

LR2 Cle	an				Non Eco	/ Baltic	Non Eco / scrubi		Ec	0	Eco sci	ubber
Route	kt	Description	WS/LS	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)
TC01	75	MEG → JAPAN	75.0	0.0	248 -	9	4,948	243	3,976 -	. 7	7,779	197
BACM44	75	$SKOR \to WAF$	1.5	0.0	- 294 -	27	4,399	173	3,732 -	- 22	7,479	138
One way												
BACM03	80	$MALTA \ \to \ JAPAN$	1.7	0.0	12,768	- 2,788	17,695 -	2,578	16,593	- 2,783	20,621	- 2,611
BACM27	90	$SPORE {\rightarrow} AG {\rightarrow} ARA$	1.7	0.0	9,425	27	13,647	207	13,048	40	16,344	181
BACM29	75	$JAPAN {\rightarrow} SKOR {\rightarrow} SPORE$	0.4	0.0	- 2,819	- 1,570	1,553 -	1,383	- 868	- 1,567	3,045	- 1,400
BACM44	75	JAPAN→SKOR→WAF	1.5	0.0	- 294 -	27	4,399	173	3,732	- 22	7,479	138
Triangulate	ed											
BACM27 +	03	MEG→ARA→MALTA→JAF	PAN		5,312 -	859	9,326 -	696	9,043	- 886	12,231	- 756
TC01 + BA	CM29	MEG→JAPAN→SKOR→S	SPORE→ME	ΞG	2,947	463	7,572 -	266	6,179 -	459	10,044	- 294
Average					3,412		7,942		6,930		10,628	
LR1 Cle	an				Non Eco	/ Baltic	Non Eco / scrubi		Ec	o	Eco scr	ubber
Route	kt	Description	WS/LS	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)
TC05	55	MEG → JAPAN	77.5	-5.0	- 409	- 2,149	3,205 -	1,955	1,272	- 2,148	4,482	- 1,976
TC08	65	MEG → ARA	1.3	0.0	- 2,176 -		1,048 -				2,341	
TC16	60	ARA → WAF	80.0	0.0	1,520	134	4,326	248	2,974	123	5,463	224
BACM45	60	WCI → MEG	0.2	0.0	- 10,903 -		- 7,801	160	- 10,350 -		- 7,381	154
One way												
BACM30	55	MALTA → JAPAN	1.5	0.0	24,029 -	- 22	27,791	139	26,020 -	- 19	29,313	122
Triangulate	ed				,				,		,	
TC08 + BA	CM30	SPORE→AG→ARA→MAL	LTA→JAPA	N	7,244 -	397	10,364 -	271	8,974 -	410	11,715	- 299
Average					3,218		6,489		4,733		7,655	
MR/Han	idy W	/est Clean			Non Eco	/ Baltic	Non Eco /	Baltic	Ec	o	Eco scr	uhhor
Pouto	l/t		14/9// 9	A (14/14)	TCE		scrubi					
Route	kt	Description	WS/LS	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)	TCE	Δ (w/w)
TC02	37	Description ARA → USAC	117.5	5.0	2,195	Δ (w/w) 601	<i>TCE</i> 3,359	Δ (w/w) 648	<i>TCE</i> 4,186	Δ (w/w) 569	<i>TCE</i> 5,131	Δ (w/w) 608
TC02 TC06	37 30	Description ARA → USAC WMED → MED	117.5 120.0	5.0 0.0	2,195 479	Δ (w/w) 601 64	7CE 3,359 2,465	Δ (w/w) 648 144	TCE 4,186 1,824	Δ (w/w) 569 54	<i>TCE</i> 5,131 3,511	Δ (w/w) 608 122
TC02 TC06 TC09	37 30 30	Description ARA → USAC WMED → MED BALTIC → ARA	117.5 120.0 120.0	5.0 0.0 0.0	2,195 479 2,123	Δ (w/w) 601 64 120	7CE 3,359 2,465 4,063	Δ (w/w) 648 144 198	TCE 4,186 1,824 4,524	Δ (w/w) 569 54 101	TCE 5,131 3,511 5,946	Δ (w/w) 608 122 159
TC02 TC06 TC09 TC14	37 30 30 38	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA	117.5 120.0 120.0 80.0	5.0 0.0 0.0 -12.5	2,195 479 2,123 - 2,421	Δ (w/w) 601 64 120 - 1,901	7CE 3,359 2,465 4,063 - 419 -	Δ (w/w) 648 144 198 1,829	TCE 4,186 1,824 4,524 - 253	Δ (w/w) 569 54 101 - 1,927	TCE 5,131 3,511 5,946 1,373	Δ (w/w) 608 122 159 - 1,868
TC02 TC06 TC09 TC14 TC18	37 30 30 38 38	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ	117.5 120.0 120.0 80.0 135.0	5.0 0.0 0.0 -12.5 -2.5	2,195 479 2,123 - 2,421 4,270	Δ (w/w) 601 64 120 - 1,901 - 2,255	7CE 3,359 2,465 4,063 - 419 - 7,560 -	Δ (w/w) 648 144 198 1,829 2,159	7CE 4,186 1,824 4,524 - 253 6,900	Δ (w/w) 569 54 101 - 1,927 - 2,275	TCE 5,131 3,511 5,946 1,373 9,168	Δ (w/w) 608 122 159 - 1,868 - 2,193
TC02 TC06 TC09 TC14 TC18 BACM11	37 30 30 38 38 38	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC	117.5 120.0 120.0 80.0 135.0 130.0	5.0 0.0 0.0 -12.5 -2.5 0.0	2,195 479 2,123 - 2,421 4,270 1,953	Δ (w/w) 601 64 120 - 1,901 - 2,255 149	7CE 3,359 2,465 4,063 - 419 - 7,560 - 3,649	Δ (w/w) 648 144 198 1,829 2,159 217	7CE 4,186 1,824 4,524 - 253 6,900 4,555	Δ (w/w) 569 54 101 - 1,927 - 2,275 116	TCE 5,131 3,511 5,946 1,373 9,168 5,848	Δ (w/w) 608 122 159 - 1,868 - 2,193 168
TC02 TC06 TC09 TC14 TC18 BACM11 BACM36	37 30 30 38 38 38 30	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED	117.5 120.0 120.0 80.0 135.0 130.0 85.0	5.0 0.0 0.0 -12.5 -2.5 0.0	2,195 479 2,123 - 2,421 4,270 1,953 - 6,042	Δ (w/w) 601 64 120 - 1,901 - 2,255 149 41	7CE 3,359 2,465 4,063 - 419 - 7,560 - 3,649 - 4,060	Δ (w/w) 648 144 198 1,829 2,159 217 205	TCE 4,186 1,824 4,524 - 253 6,900 4,555 - 4,250	Δ (w/w) 569 54 101 - 1,927 - 2,275 116 37	TCE 5,131 3,511 5,946 1,373 9,168 5,848 - 2,596	Δ (w/w) 608 122 159 - 1,868 - 2,193 168 175
TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37	37 30 30 38 38 30 30	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED	117.5 120.0 120.0 80.0 135.0 130.0 85.0 135.0	5.0 0.0 0.0 -12.5 -2.5 0.0 0.0	2,195 479 2,123 - 2,421 4,270 1,953 - 6,042 255	Δ (w/w) 601 64 120 - 1,901 - 2,255 149 41 - 769	7CE 3,359 2,465 4,063 - 419 7,560 3,649 - 4,060 2,462 -	Δ (w/w) 648 144 198 1,829 2,159 217 205 679	TCE 4,186 1,824 4,524 - 253 6,900 4,555 - 4,250 1,413	Δ (w/w) 569 54 101 - 1,927 - 2,275 116 37 - 777	7CE 5,131 3,511 5,946 1,373 9,168 5,848 - 2,596 3,363	Δ (w/w) 608 122 159 - 1,868 - 2,193 168 175 - 698
TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37 BACM47	37 30 30 38 38 38 30	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED	117.5 120.0 120.0 80.0 135.0 130.0 85.0	5.0 0.0 0.0 -12.5 -2.5 0.0	2,195 479 2,123 - 2,421 4,270 1,953 - 6,042	Δ (w/w) 601 64 120 - 1,901 - 2,255 149 41	7CE 3,359 2,465 4,063 - 419 - 7,560 - 3,649 - 4,060	Δ (w/w) 648 144 198 1,829 2,159 217 205	TCE 4,186 1,824 4,524 - 253 6,900 4,555 - 4,250	Δ (w/w) 569 54 101 - 1,927 - 2,275 116 37	TCE 5,131 3,511 5,946 1,373 9,168 5,848 - 2,596	Δ (w/w) 608 122 159 - 1,868 - 2,193 168 175
TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37 BACM47 One way	37 30 30 38 38 30 30 30 30	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA	117.5 120.0 120.0 80.0 135.0 130.0 85.0 135.0	5.0 0.0 0.0 -12.5 -2.5 0.0 0.0	2,195 479 2,123 - 2,421 4,270 1,953 - 6,042 255 13,217	Δ (w/w) 601 64 120 - 1,901 - 2,255 149 41 - 769 1,526	7CE 3,359 2,465 4,063 - 419 7,560 3,649 - 4,060 2,462 15,309	Δ (w/w) 648 144 198 1,829 2,159 217 205 679 1,611	7CE 4,186 1,824 4,524 - 253 6,900 4,555 - 4,250 1,413 15,100	Δ (w/w) 569 54 101 - 1,927 - 2,275 116 37 - 777 1,508	TCE 5,131 3,511 5,946 1,373 9,168 5,848 - 2,596 3,363 16,829	Δ (w/w) 608 122 159 - 1,868 - 2,193 168 175 - 698 1,578
TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37 BACM47 One way BACM47	37 30 30 38 38 30 30 30 30 35	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED	117.5 120.0 120.0 80.0 135.0 130.0 85.0 135.0	5.0 0.0 0.0 -12.5 -2.5 0.0 0.0	2,195 479 2,123 - 2,421 4,270 1,953 - 6,042 255	Δ (w/w) 601 64 120 - 1,901 - 2,255 149 41 - 769	7CE 3,359 2,465 4,063 - 419 7,560 3,649 - 4,060 2,462 -	Δ (w/w) 648 144 198 1,829 2,159 217 205 679	TCE 4,186 1,824 4,524 - 253 6,900 4,555 - 4,250 1,413	Δ (w/w) 569 54 101 - 1,927 - 2,275 116 37 - 777	7CE 5,131 3,511 5,946 1,373 9,168 5,848 - 2,596 3,363	Δ (w/w) 608 122 159 - 1,868 - 2,193 168 175 - 698
TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37 BACM47 One way BACM47 Triangulate	37 30 30 38 38 30 30 30 35	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA	117.5 120.0 120.0 80.0 135.0 130.0 85.0 135.0 1.0	5.0 0.0 0.0 -12.5 -2.5 0.0 0.0	2,195 479 2,123 - 2,421 4,270 1,953 - 6,042 255 13,217	Δ (w/w) 601 64 120 - 1,901 - 2,255 149 41 - 769 1,526	7CE 3,359 2,465 4,063 - 419 7,560 3,649 - 4,060 2,462 15,309	Δ (w/w) 648 144 198 1,829 2,159 217 205 679 1,611	7CE 4,186 1,824 4,524 - 253 6,900 4,555 - 4,250 1,413 15,100	Δ (w/w) 569 54 101 - 1,927 - 2,275 116 37 - 777 1,508	TCE 5,131 3,511 5,946 1,373 9,168 5,848 - 2,596 3,363 16,829	Δ (w/w) 608 122 159 - 1,868 - 2,193 168 175 - 698 1,578 2,413
TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37 BACM47 One way BACM47	37 30 30 38 38 30 30 30 35	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA	117.5 120.0 120.0 80.0 135.0 130.0 85.0 135.0 1.0	5.0 0.0 0.0 -12.5 -2.5 0.0 0.0	2,195 479 2,123 - 2,421 4,270 1,953 - 6,042 255 13,217	Δ (w/w) 601 64 120 - 1,901 - 2,255 149 41 - 769 1,526	7CE 3,359 2,465 4,063 - 419 - 7,560 - 3,649 - 4,060 2,462 - 15,309 21,276	Δ (w/w) 648 144 198 1,829 2,159 217 205 679 1,611	TCE 4,186 1,824 4,524 - 253 6,900 4,555 - 4,250 1,413 15,100	Δ (w/w) 569 54 101 - 1,927 - 2,275 116 37 - 777 1,508	TCE 5,131 3,511 5,946 1,373 9,168 5,848 - 2,596 3,363 16,829 22,848	Δ (w/w) 608 122 159 - 1,868 - 2,193 168 175 - 698 1,578 2,413
TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37 BACM47 One way BACM47 Triangulate TC02 + TC	37 30 30 38 38 30 30 30 35 35	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA ARA→USAC→USG→ARA	117.5 120.0 120.0 80.0 135.0 130.0 85.0 135.0 1.0	5.0 0.0 0.0 -12.5 -2.5 0.0 0.0	2,195 479 2,123 - 2,421 4,270 1,953 - 6,042 255 13,217 19,261 6,092 3,762	Δ (w/w) 601 64 120 1,901 2,255 149 41 769 1,526 2,365	7CE 3,359 2,465 4,063 - 419 - 7,560 3,649 - 4,060 2,462 15,309 21,276 7,514 -	Δ (w/w) 648 144 198 1,829 2,159 217 205 679 1,611 2,446	7CE 4,186 1,824 4,524 - 253 6,900 4,555 - 4,250 1,413 15,100 21,207 8,153 5,760	Δ (w/w) 569 54 101 - 1,927 - 2,275 116 37 - 777 1,508 2,346 - 1,386	7CE 5,131 3,511 5,946 1,373 9,168 5,848 - 2,596 3,363 16,829 22,848 9,277 7,336	Δ (w/w) 608 122 159 - 1,868 - 2,193 168 175 - 698 1,578 2,413 - 1,341
TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37 BACM47 One way BACM47 Triangulate TC02 + TC Average	37 30 30 38 38 30 30 30 35 35 ed 14	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA ARA→USAC→USG→ARA	117.5 120.0 120.0 80.0 135.0 130.0 85.0 135.0 1.0	5.0 0.0 0.0 -12.5 -2.5 0.0 0.0 0.0	2,195 479 2,123 - 2,421 4,270 1,953 - 6,042 255 13,217 19,261 6,092 3,762	Δ (w/w) 601 64 120 - 1,901 - 2,255 149 41 - 769 1,526 2,365 - 1,359	7CE 3,359 2,465 4,063 - 419 - 7,560 - 3,649 - 4,060 2,462 - 15,309 21,276 7,514 - 5,743 Non Eco/scrubi	Δ (w/w) 648 144 198 1,829 2,159 217 205 679 1,611 2,446 1,301	7CE 4,186 1,824 4,524 - 253 6,900 4,555 - 4,250 1,413 15,100 21,207 8,153 5,760	Δ (w/w) 569 54 101 - 1,927 - 2,275 116 37 - 777 1,508 2,346 - 1,386	TCE 5,131 3,511 5,946 1,373 9,168 5,848 - 2,596 3,363 16,829 22,848 9,277 7,336 Eco scr	Δ (w/w) 608 122 159 - 1,868 - 2,193 168 175 - 698 1,578 2,413 - 1,341
TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37 BACM47 One way BACM47 Triangulate TC02 + TC Average	37 30 30 38 38 30 30 30 35 35 44	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA ARA→USAC→USG→ARA Description	117.5 120.0 120.0 80.0 135.0 130.0 85.0 135.0 1.0	5.0 0.0 0.0 -12.5 -2.5 0.0 0.0 0.0	2,195 479 2,123 - 2,421 4,270 1,953 - 6,042 255 13,217 19,261 6,092 3,762	Δ (w/w) 601 64 120 - 1,901 - 2,255 149 41 - 769 1,526 2,365 - 1,359	7CE 3,359 2,465 4,063 - 419 - 7,560 - 3,649 - 4,060 2,462 - 15,309 21,276 7,514 - 5,743 Non Eco / scrubil	Δ (w/w) 648 144 198 1,829 2,159 217 205 679 1,611 2,446 1,301	7CE 4,186 1,824 4,524 - 253 6,900 4,555 - 4,250 1,413 15,100 21,207 8,153 5,760	Δ (w/w) 569 54 101 - 1,927 - 2,275 116 37 - 777 1,508 2,346 - 1,386	TCE 5,131 3,511 5,946 1,373 9,168 5,848 - 2,596 3,363 16,829 22,848 9,277 7,336 Eco scr	Δ (w/w) 608 122 159 - 1,868 - 2,193 168 175 - 698 1,578 2,413 - 1,341
TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37 BACM47 One way BACM47 Triangulate TC02 + TC Average MR/Han Route TC07	37 30 30 38 38 30 30 30 35 35 4d 14	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA ARA→USAC→USG→ARA Description SPORE → OZ	117.5 120.0 120.0 80.0 135.0 130.0 85.0 135.0 1.0	5.0 0.0 0.0 -12.5 -2.5 0.0 0.0 0.0 0.0	2,195 479 2,123 - 2,421 4,270 1,953 - 6,042 255 13,217 19,261 6,092 3,762 Non Eco	Δ (w/w) 601 64 120 1,901 2,255 149 41 769 1,526 2,365 - 1,359	7CE 3,359 2,465 4,063 - 419 - 7,560 - 3,649 - 4,060 2,462 - 15,309 21,276 7,514 - 5,743 Non Eco / scrubil TCE 3,391 -	Δ (w/w) 648 144 198 1,829 2,159 217 205 679 1,611 2,446 1,301 (Baltic ber Δ (w/w) 627	7CE 4,186 1,824 4,524 - 253 6,900 4,555 - 4,250 1,413 15,100 21,207 8,153 5,760 Ecc. 7CE 2,426 - 4,186 - 4,250 - 5,760 - 6,20	Δ (w/w) 569 54 101 - 1,927 - 2,275 116 37 - 777 1,508 2,346 - 1,386	TCE 5,131 3,511 5,946 1,373 9,168 5,848 - 2,596 3,363 16,829 22,848 9,277 7,336 Eco scr TCE 5,311	Δ (w/w) 608 122 159 - 1,868 - 2,193 168 175 - 698 1,578 2,413 - 1,341 ubber Δ (w/w) - 649
TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37 BACM47 One way BACM47 Triangulate TC02 + TC Average MR/Han Route TC07 TC10	37 30 30 38 38 30 30 30 35 35 40	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA ARA→USAC→USG→ARA Description SPORE → OZ SKOREA → USWC	117.5 120.0 120.0 80.0 135.0 130.0 85.0 135.0 1.0	5.0 0.0 0.0 -12.5 -2.5 0.0 0.0 0.0 0.0 0.0	2,195 479 2,123 - 2,421 4,270 1,953 - 6,042 255 13,217 19,261 6,092 3,762 Non Eco	Δ (w/w) 601 64 120 1,901 2,255 149 41 769 1,526 2,365 - 1,359 / Baltic Δ (w/w) 775 669	7CE 3,359 2,465 4,063 - 419 - 7,560 - 3,649 - 4,060 2,462 - 15,309 21,276 7,514 - 5,743 Non Eco / scrubil TCE 3,391 - 5,431 -	Δ (w/w) 648 144 198 1,829 2,159 217 205 679 1,611 2,446 1,301 / Baltic ber Δ (w/w) 627 558	7CE 4,186 1,824 4,524 - 253 6,900 4,555 - 4,250 1,413 15,100 21,207 8,153 5,760 Ecc. 7CE 2,426 4,982 -	Δ (w/w) 569 54 101 - 1,927 - 2,275 116 37 - 777 1,508 2,346 - 1,386	7CE 5,131 3,511 5,946 1,373 9,168 5,848 - 2,596 3,363 16,829 22,848 9,277 7,336 Eco scr TCE 5,311 7,119	Δ (w/w) 608 122 159 - 1,868 - 2,193 168 175 - 698 1,578 2,413 - 1,341 ubber Δ (w/w) - 649 - 579
TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37 BACM47 One way BACM47 Triangulate TC02 + TC Average MR/Han Route TC07 TC10 TC11	37 30 30 38 38 30 30 30 35 35 40 40 40	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA ARA→USAC→USG→ARA ARA→USAC→USG→ARA Description SPORE → OZ SKOREA → USWC JAPAN → SPORE	117.5 120.0 120.0 80.0 135.0 130.0 85.0 135.0 1.0 WS/LS 117.5 0.8 0.2	5.0 0.0 0.0 -12.5 -2.5 0.0 0.0 0.0 0.0 Δ (w/w) -7.5 0.0 0.0	2,195 479 2,123 - 2,421 4,270 1,953 - 6,042 255 13,217 19,261 6,092 3,762 Non Eco	Δ (w/w) 601 64 120 1,901 2,255 149 41 769 1,526 2,365 - 1,359 / Baltic Δ (w/w) 775 669 410	7CE 3,359 2,465 4,063 - 419 - 7,560 - 3,649 - 4,060 2,462 - 15,309 21,276 7,514 - 5,743 Non Eco / scrubil TCE 3,391 - 5,431 - 2,582 -	Δ (w/w) 648 144 198 1,829 2,159 217 205 679 1,611 2,446 1,301 / Baltic ber Δ (w/w) 627 558 311	7CE 4,186 1,824 4,524 - 253 6,900 4,555 - 4,250 1,413 15,100 21,207 8,153 5,760 Ecc. 7CE 2,426 4,982 - 3,046 -	Δ (w/w) 569 54 101 - 1,927 - 2,275 116 37 - 777 1,508 2,346 - 1,386 Δ (w/w) - 772 - 670 - 417	7CE 5,131 3,511 5,946 1,373 9,168 5,848 - 2,596 3,363 16,829 22,848 9,277 7,336 Eco scr 7CE 5,311 7,119 - 1,067	Δ (w/w) 608 122 159 - 1,868 - 2,193 168 175 - 698 1,578 2,413 - 1,341 ubber Δ (w/w) - 649 - 579 - 333
TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37 BACM47 One way BACM47 Triangulate TC02 + TC Average MR/Han Route TC07 TC10 TC11 TC12	37 30 30 38 38 30 30 30 35 35 40 40 40 35	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA ARA→USAC→USG→ARA Description SPORE → OZ SKOREA → USWC JAPAN → SPORE SIKKA → JAPAN	117.5 120.0 120.0 80.0 135.0 130.0 85.0 135.0 1.0 WS/LS 117.5 0.8 0.2 87.5	5.0 0.0 0.0 -12.5 -2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	2,195 479 2,123 - 2,421 4,270 1,953 - 6,042 255 13,217 19,261 6,092 3,762 Non Eco TCE - 84 2,828 - 4,913 - 1,395	Δ (w/w) 601 64 120 1,901 2,255 149 41 769 1,526 2,365 - 1,359 / Baltic Δ (w/w) 775 669 410 - 1,801	7CE 3,359 2,465 4,063 - 419 - 7,560 - 3,649 - 4,060 2,462 - 15,309 21,276 7,514 - 5,743 Non Eco / scrubil 7CE 3,391 - 5,431 - 2,582 - 1,534 -	Δ (w/w) 648 144 198 1,829 2,159 217 205 679 1,611 2,446 1,301 (Baltic ber Δ (w/w) 627 558 311 1,675	7CE 4,186 1,824 4,524 - 253 6,900 4,555 - 4,250 1,413 15,100 21,207 8,153 5,760 Ecc 7CE 2,426 4,982 - 3,046 765	Δ (w/w) 569 54 101 - 1,927 - 2,275 116 37 - 777 1,508 2,346 - 1,386 Δ (w/w) - 772 - 670 - 417 - 1,798	7CE 5,131 3,511 5,946 1,373 9,168 5,848 - 2,596 3,363 16,829 22,848 9,277 7,336 Eco scr TCE 5,311 7,119 - 1,067 3,187	Δ (w/w) 608 122 159 - 1,868 - 2,193 168 175 - 698 1,578 2,413 - 1,341 ubber Δ (w/w) - 649 - 579 - 333 - 1,694
TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37 BACM47 One way BACM47 Triangulate TC02 + TC Average MR/Han Route TC07 TC10 TC11 TC12 TC17	37 30 30 38 38 30 30 30 35 35 40 40 40 35 35	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA ARA→USAC→USG→ARA Description SPORE → OZ SKOREA → USWC JAPAN → SPORE SIKKA → JAPAN MEG → EAF	117.5 120.0 120.0 80.0 135.0 130.0 85.0 135.0 1.0 WS/LS 117.5 0.8 0.2 87.5 135.0	5.0 0.0 12.5 -2.5 0.0 0.0 0.0 0.0 0.0 Δ (w/w) -7.5 0.0 0.0 -7.5	2,195 479 2,123 - 2,421 4,270 1,953 - 6,042 255 13,217 19,261 6,092 3,762 Non Eco TCE - 84 2,828 - 4,913 - 1,395 4,275	Δ (w/w) 601 64 120 - 1,901 - 2,255 149 41 - 769 1,526 2,365 - 1,359 / Baltic Δ (w/w) - 775 669 410 - 1,801 673	7CE 3,359 2,465 4,063 - 419 - 7,560 - 3,649 - 4,060 2,462 - 15,309 21,276 7,514 - 5,743 Non Eco / scrubi TCE 3,391 - 5,431 - 2,582 - 1,534 - 7,114	Δ (w/w) 648 144 198 1,829 2,159 217 205 679 1,611 2,446 1,301 (Baltic ber Δ (w/w) 627 558 311 1,675 826	7CE 4,186 1,824 4,524 - 253 6,900 4,555 - 4,250 1,413 15,100 21,207 8,153 5,760 Ecc 7CE 2,426 4,982 - 3,046 765 6,175	Δ (w/w) 569 54 101 - 1,927 - 2,275 116 37 - 777 1,508 2,346 - 1,386 0 Δ (w/w) - 772 - 670 - 417 - 1,798 - 674	7CE 5,131 3,511 5,946 1,373 9,168 5,848 - 2,596 3,363 16,829 22,848 9,277 7,336 Eco scr 7CE 5,311 7,119 - 1,067 3,187 8,557	Δ (w/w) 608 122 159 - 1,868 - 2,193 168 175 - 698 1,578 2,413 - 1,341 ubber Δ (w/w) - 649 - 333 - 1,694 802
TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37 BACM47 One way BACM47 Triangulate TC02 + TC Average MR/Han Route TC07 TC10 TC11 TC12 TC17 BACM48	37 30 30 38 38 38 30 30 30 35 35 40 40 35 35 35	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA ARA→USAC→USG→ARA Description SPORE → OZ SKOREA → USWC JAPAN → SPORE SIKKA → JAPAN	117.5 120.0 120.0 80.0 135.0 130.0 85.0 135.0 1.0 WS/LS 117.5 0.8 0.2 87.5	5.0 0.0 0.0 -12.5 -2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	2,195 479 2,123 - 2,421 4,270 1,953 - 6,042 255 13,217 19,261 6,092 3,762 Non Eco TCE - 84 2,828 - 4,913 - 1,395	Δ (w/w) 601 64 120 - 1,901 - 2,255 149 41 - 769 1,526 2,365 - 1,359 / Baltic Δ (w/w) - 775 669 410 - 1,801 673	7CE 3,359 2,465 4,063 - 419 - 7,560 - 3,649 - 4,060 2,462 - 15,309 21,276 7,514 - 5,743 Non Eco / scrubil 7CE 3,391 - 5,431 - 2,582 - 1,534 -	Δ (w/w) 648 144 198 1,829 2,159 217 205 679 1,611 2,446 1,301 (Baltic ber Δ (w/w) 627 558 311 1,675 826	7CE 4,186 1,824 4,524 - 253 6,900 4,555 - 4,250 1,413 15,100 21,207 8,153 5,760 Ecc 7CE 2,426 4,982 - 3,046 765 6,175	Δ (w/w) 569 54 101 - 1,927 - 2,275 116 37 - 777 1,508 2,346 - 1,386 0 Δ (w/w) - 772 - 670 - 417 - 1,798 - 674	7CE 5,131 3,511 5,946 1,373 9,168 5,848 - 2,596 3,363 16,829 22,848 9,277 7,336 Eco scr TCE 5,311 7,119 - 1,067 3,187	Δ (w/w) 608 122 159 - 1,868 - 2,193 168 175 - 698 1,578 2,413 - 1,341 ubber Δ (w/w) - 649 - 333 - 1,694 802
TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37 BACM47 One way BACM47 Triangulate TC02 + TC Average MR/Han Route TC07 TC10 TC11 TC12 TC17 BACM48 Triangulate Triangulate Triangulate TC17	37 30 30 38 38 30 30 30 35 35 40 40 40 35 35 35 40	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA ARA→USAC→USG→ARA ARA→USAC→USG→ARA Description SPORE → OZ SKOREA → USWC JAPAN → SPORE SIKKA → JAPAN MEG → EAF SPORE → HK	117.5 120.0 120.0 80.0 135.0 130.0 85.0 135.0 1.0 WS/LS 117.5 0.8 0.2 87.5 135.0 0.2	5.0 0.0 12.5 -2.5 0.0 0.0 0.0 0.0 0.0 Δ (w/w) -7.5 0.0 0.0 -7.5	2,195 479 2,123 - 2,421 4,270 1,953 - 6,042 255 13,217 19,261 6,092 3,762 Non Eco TCE - 84 2,828 - 4,913 - 1,395 4,275 - 2,086	Δ (w/w) 601 64 120 1,901 2,255 149 41 769 1,526 2,365 - 1,359 / Baltic Δ (w/w) 775 669 410 - 1,801 673 620	7CE 3,359 2,465 4,063 - 419 - 7,560 - 3,649 - 4,060 2,462 - 15,309 21,276 7,514 - 5,743 Non Eco / scrubi TCE 3,391 - 5,431 - 2,582 - 1,534 - 7,114 26 -	Δ (w/w) 648 144 198 1,829 2,159 217 205 679 1,611 2,446 1,301 (Baltic ber Δ (w/w) 627 558 311 1,675 826 529	TCE 4,186 1,824 4,524 - 253 6,900 4,555 - 4,250 1,413 15,100 21,207 8,153 - 5,760 Ecc TCE 2,426 4,982 - 3,046 765 - 6,175 - 525 - 525	Δ (w/w) 569 54 101 - 1,927 - 2,275 116 37 - 777 1,508 2,346 - 1,386 Δ (w/w) - 772 - 670 - 417 - 1,798 - 674 - 621	7CE 5,131 3,511 5,946 1,373 9,168 5,848 - 2,596 3,363 16,829 22,848 9,277 7,336 Eco scr 7CE 5,311 7,119 - 1,067 3,187 8,557 1,251	Δ (w/w) 608 122 159 - 1,868 - 2,193 168 175 - 698 1,578 2,413 - 1,341 ubber Δ (w/w) - 649 - 333 - 1,694 802 - 545
TC02 TC06 TC09 TC14 TC18 BACM11 BACM36 BACM37 BACM47 One way BACM47 Triangulate TC02 + TC Average MR/Han Route TC07 TC10 TC11 TC12 TC17 BACM48	37 30 30 38 38 30 30 30 35 35 40 40 40 35 35 35 40	Description ARA → USAC WMED → MED BALTIC → ARA USG → ARA USG → BRAZ WMED → UKC ARA → MED BSEA → MED MEG → ARA RSEA→MEG→ARA ARA→USAC→USG→ARA Description SPORE → OZ SKOREA → USWC JAPAN → SPORE SIKKA → JAPAN MEG → EAF	117.5 120.0 120.0 80.0 135.0 130.0 85.0 135.0 1.0 WS/LS 117.5 0.8 0.2 87.5 135.0 0.2	5.0 0.0 12.5 -2.5 0.0 0.0 0.0 0.0 0.0 Δ (w/w) -7.5 0.0 0.0 -7.5	2,195 479 2,123 - 2,421 4,270 1,953 - 6,042 255 13,217 19,261 6,092 3,762 Non Eco TCE - 84 2,828 - 4,913 - 1,395 4,275	Δ (w/w) 601 64 120 1,901 2,255 149 41 769 1,526 2,365 - 1,359 / Baltic Δ (w/w) 775 669 410 - 1,801 673 620	7CE 3,359 2,465 4,063 - 419 - 7,560 - 3,649 - 4,060 2,462 - 15,309 21,276 7,514 - 5,743 Non Eco / scrubi TCE 3,391 - 5,431 - 2,582 - 1,534 - 7,114	Δ (w/w) 648 144 198 1,829 2,159 217 205 679 1,611 2,446 1,301 (Baltic ber Δ (w/w) 627 558 311 1,675 826 529	7CE 4,186 1,824 4,524 - 253 6,900 4,555 - 4,250 1,413 15,100 21,207 8,153 5,760 Ecc 7CE 2,426 4,982 - 3,046 765 6,175	Δ (w/w) 569 54 101 - 1,927 - 2,275 116 37 - 777 1,508 2,346 - 1,386 Δ (w/w) - 772 - 670 - 417 - 1,798 - 674 - 621	7CE 5,131 3,511 5,946 1,373 9,168 5,848 - 2,596 3,363 16,829 22,848 9,277 7,336 Eco scr 7CE 5,311 7,119 - 1,067 3,187 8,557	Δ (w/w) 608 122 159 - 1,868 - 2,193 168 175 - 698 1,578 2,413 - 1,341 ubber Δ (w/w) - 649 - 333 - 1,694 802 - 545




Average Spot Earnings (basis Non Eco / Baltic standard vessel)





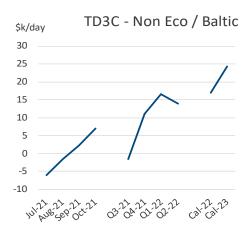


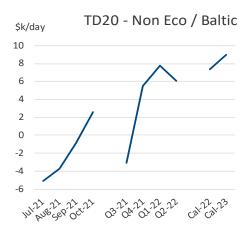
Dirty Wet FFAs

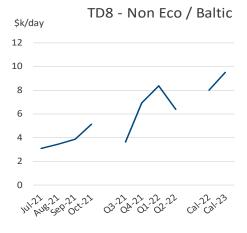
Braemar ACM Tanker Weekly 9 July 2021 | Week 27

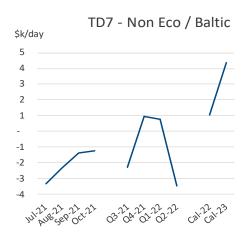
TD3c MEG \rightarrow China 270kt

			Non Eco	o / Baltic	Eco		
	WS	\$/t	No Scrubber	Scrubber	No Scrubber	Scrubber	
Spot	31.43	5.73	- 5,076	1,546	981	6,027	
Jul-21	30.50	5.56	- 5,985	598	17	5,034	
Aug-21	34.75	6.33	- 1,555	4,977	4,422	9,400	
Sep-21	38.50	7.02	2,379	8,846	8,327	13,256	
Oct-21	43.00	7.84	7,084	13,551	13,012	17,940	
Q3-21	34.58	6.30	- 1,484	4,851	4,440	9,359	
Q4-21	46.50	8.48	11,034	17,450	16,886	21,775	
Q1-22	51.56	9.40	16,605	22,995	22,376	27,246	
Q2-22	48.55	8.85	13,918	20,257	19,604	24,435	
Cal-22	51.73	9.43	16,958	23,310	22,688	27,528	
Cal-23	57.60	10.50	24,318	30,323	29,766	34,342	

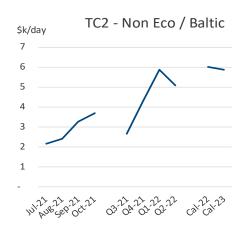

				Non Eco / Baltic			Eco		
	WS	\$/t	s	No crubber	Scrubb	er	No Scrubber	Scrubber	
Spot	49.36	6.97	-	4,030	29	3	1,380	4,548	
Jul-21	49.00	6.92	-	5,080	- 36	0	1,121	4,322	
Aug-21	51.50	7.27	-	3,760	92	23	2,423	5,638	
Sep-21	57.00	8.05	-	927	3,71	0	5,229	8,451	
Oct-21	63.75	9.00		2,552	7,18	89	8,700	11,942	
Q3-21	52.50	7.41	-	3,076	1,45	6	3,063	6,305	
Q4-21	69.00	9.74		5,480	10,08	80	11,593	14,835	
Q1-22	72.95	10.30		7,777	12,35	9	13,828	17,057	
Q2-22	69.05	9.75		6,114	10,65	9	12,108	15,356	
Cal-22	71.88	10.15		7,382	11,93	86	13,405	16,653	
Cal-23	72.95	10.30		8,972	13,27	7	14,847	17,933	


TD8 Kuwait → Singapore 80kt

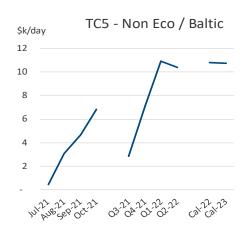

		0 1	Non Eco	o / Baltic	E	co
	WS	\$/t	No Scrubber	Scrubber	No Scrubber	Scrubber
Spot	89.22	11.26	4,186	8,868	7,795	11,609
Jul-21	86.00	10.85	3,090	7,683	6,884	10,632
Aug-21	87.00	10.98	3,474	8,031	7,284	10,944
Sep-21	88.00	11.11	3,868	8,379	7,677	11,264
Oct-21	91.75	11.58	5,111	9,623	8,849	12,509
Q3-21	87.00	10.98	3,636	8,067	7,416	11,025
Q4-21	96.75	12.21	6,915	11,391	10,623	14,268
Q1-22	100.63	12.70	8,389	12,847	12,011	15,701
Q2-22	93.50	11.80	6,421	10,843	9,959	13,684
Cal-22	99.05	12.50	8,019	12,450	11,597	15,308
Cal-23	101.03	12.75	9,526	13,715	12,822	16,519


TD7 N. Sea → UK Cont 80kt

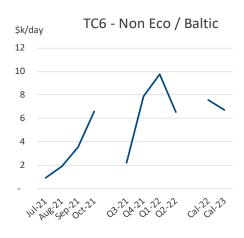
				Non Ec	Baltic		Eco			
	WS	\$/t	S	No Scrubber	S	crubber	s	No crubber	S	crubber
Spot	93.13	5.48	-	6,125	-	6,125	-	4,989	-	4,989
Jul-21	100.00	5.88	-	3,317	-	3,317	-	1,588	-	1,588
Aug-21	102.00	6.00	-	2,332	-	2,332	-	623	-	623
Sep-21	104.00	6.12	-	1,348	-	1,348		341		341
Oct-21	104.00	6.12	-	1,254	-	1,254		428		428
Q3-21	102.00	6.00	-	2,262	-	2,356	-	580	-	580
Q4-21	108.00	6.35		964		964		2,631		2,631
Q1-22	107.14	6.30		751		751		2,394		2,394
Q2-22	98.64	5.80	-	3,448	-	3,448	-	1,804	-	1,804
Cal-22	107.65	6.33		1,039		1,039		2,680		2,680
Cal-23	113.10	6.65		4,382		4,382		5,986		5,986


Clean Wet FFAs

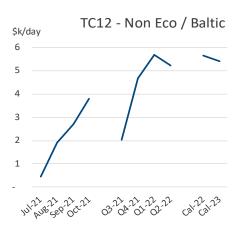
Braemar ACM Tanker Weekly 9 July 2021 | Week 27


TC2 UK Cont \rightarrow US AC 37kt

			Non Eco	o / Baltic	Eco		
	WS	\$/t	No Scrubber	Scrubber	No Scrubber	Scrubber	
Spot	117.50	24.04	2,195	3,359	4,186	5,131	
Jul-21	120.00	24.55	2,148	3,418	4,499	5,455	
Aug-21	121.50	24.86	2,394	3,654	4,737	5,697	
Sep-21	127.00	25.98	3,268	4,517	5,601	6,563	
Oct-21	129.25	26.44	3,677	4,925	6,005	6,972	
Q3-21	122.83	25.13	2,673	3,864	4,999	5,967	
Q4-21	132.50	27.11	4,330	5,568	6,644	7,612	
Q1-22	85.04	17.40	5,872	7,105	8,161	9,125	
Q2-22	81.62	16.70	5,086	6,309	7,364	8,333	
Cal-22	85.43	17.48	6,020	7,246	8,303	9,273	
Cal-23	83.09	17.00	5,884	7,043	8,121	9,042	


TC5 MEG → Japan 55kt

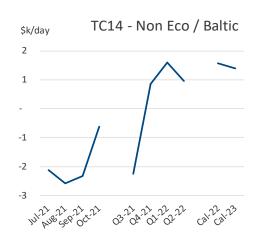
		-	Non Eco	o / Baltic	Eco		
	WS	\$/t	No Scrubber	Scrubber	No Scrubber	Scrubber	
Spot	77.50	8.32	- 409	3,205	1,272	4,482	
Jul-21	81.76	8.78	434	3,979	2,264	5,419	
Aug-21	93.75	10.07	3,058	6,575	4,906	7,987	
Sep-21	101.00	10.85	4,673	8,156	6,526	9,546	
Oct-21	110.75	11.89	6,817	10,299	8,658	11,695	
Q3-21	92.17	9.90	2,844	6,264	4,678	7,716	
Q4-21	111.25	11.95	7,111	10,566	8,900	11,969	
Q1-22	243.95	26.20	10,911	14,352	12,647	15,752	
Q2-22	237.43	25.50	10,379	13,792	12,062	15,198	
Cal-22	242.09	26.00	10,798	14,219	12,505	15,629	
Cal-23	235.57	25.30	10,751	13,984	12,283	15,394	


TC6 Skikda → Lavera 30kt

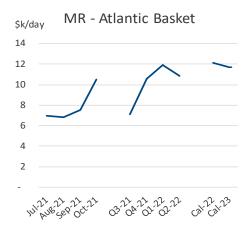
			Non Eco	o / Baltic	Eco		
	WS	\$/t	No Scrubber	Scrubber	No Scrubber	Scrubber	
Spot	120.00	24.55	479	2,465	1,824	3,511	
Jul-21	123.00	25.17	911	3,079	2,581	4,285	
Aug-21	127.00	25.98	1,911	4,062	3,579	5,291	
Sep-21	133.50	27.31	3,518	5,648	5,180	6,896	
Oct-21	146.00	29.87	6,569	8,699	8,233	9,960	
Q3-21	127.83	26.15	2,187	4,279	3,847	5,574	
Q4-21	151.00	30.89	7,890	10,003	9,555	11,282	
Q1-22	50.34	10.30	9,755	11,860	11,409	13,128	
Q2-22	45.94	9.40	6,541	8,628	8,183	9,913	
Cal-22	47.41	9.70	7,590	9,682	9,238	10,968	
Cal-23	45.70	9.35	6,711	8,689	8,351	9,994	

TC12 WCI → Japan 35kt

		•	Non Eco	o / Baltic	Eco		
	WS	\$/t	No Scrubber	Scrubber	No Scrubber	Scrubber	
Spot	87.50	15.86	- 1,395	1,534	765	3,187	
Jul-21	100.00	18.13	451	3,363	2,601	5,008	
Aug-21	110.00	19.94	1,923	4,813	4,065	6,453	
Sep-21	115.00	20.85	2,688	5,549	4,821	7,186	
Oct-21	122.50	22.21	3,803	6,664	5,928	8,293	
Q3-21	110.00	19.94	2,025	4,835	4,150	6,510	
Q4-21	127.50	23.12	4,670	7,509	6,769	9,115	
Q1-22	137.89	25.00	5,678	8,505	7,748	10,084	
Q2-22	133.48	24.20	5,233	8,038	7,275	9,593	
Cal-22	137.07	24.85	5,643	8,453	7,699	10,022	
Cal-23	131.27	23.80	5,407	8,063	7,365	9,561	


Clean Wet FFAs

Braemar ACM Tanker Weekly 9 July 2021 | Week 27


TC14 USG → UK Cont 38kt

				Non Ec	o /	Baltic	Eco		
	WS	\$/t	S	No crubber	s	crubber		No ubber	Scrubber
Spot	80.00	14.99	-	2,421	-	419	-	253	1,373
Jul-21	81.50	15.27	-	2,124	-	183		370	1,830
Aug-21	78.50	14.71	-	2,594	-	669	-	107	1,359
Sep-21	80.00	14.99	-	2,318	-	411		159	1,628
Oct-21	90.00	16.87	-	614		1,293	•	,860	3,339
Q3-21	80.00	14.99	-	2,262	-	411		209	1,687
Q4-21	98.00	18.37		857		2,749	3	3,321	4,799
Q1-22	97.39	18.25		1,615		3,499	4	1,056	5,528
Q2-22	92.85	17.40		964		2,833	3	3,389	4,870
Cal-22	96.85	18.15		1,584		3,456	4	1,016	5,498
Cal-23	92.85	17.40		1,411		3,181	3	3,801	5,208

MR - Atlantic Basket

	\$/day	
Spot	5620	
Jul-21	6,980	
Aug-21	6,812	
Sep-21	7,535	
Oct-21	10,524	
Q3-21	7,109	
Q4-21	10,556	
Q1-22	11,951	
Q2-22	10,851	
Cal-22	12,114	
Cal-23	11,686	

FFA Comments

Braemar ACM Tanker Weekly 9 July 2021 | Week 27

TD3c: With the news of no agreements coming from the OPEC meeting from the backend of last week / this Monday, there was no surprise that Jul and Aug contracts took a step down early this week and continuing to fall for the rest of the week as any hope in a recovery for the next few weeks was shot down. Balmo trading last at an equivalent of 30ws makes for very tough reading this early in the month. August was valued at 38ws at the start of the week before falling to a low print of 34.5ws, already in negative earnings territory before the month even starts, meaning this roll down has started early than most recently. The flat price market was choppy, but the Q4-21 contracts lost value again this week, easing from the low 50s, to trade last at 46.5ws, the lowest we have seen that trade for a while. The pessimism rolled into next year too, with the Cal-22 trading down from \$9.7 value to trade last at \$9.4. This was a little under the recent low of \$17,200 a day, and with the Q4-21 down to where it is now, we expect this earnings number to come off further.

Angus Procter

TD20: It is strange, if not an ominous week for TD20. Stick with me here, the spot price is 49.36ws! Month to date is 49.57ws which then, in turn, means that when 47.5ws trades for full month Jul-21, which it did, then this equates to 46.53ws. Put that into perspective, selling 46.53ws for the rest of the month (-\$3,704 per day non-scrubber) because you think it will price lower. I think the less said here the better.

Jay Lovell

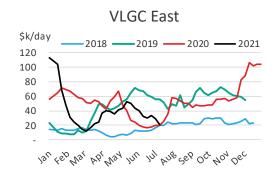
TC2: There is not much movement on the forward curve this week for TC2, with the physical staying steady around 115ws. The front contracts were inactive with a lack of any discernible spot volatility. Jul traded at 120ws and Aug at 122ws, then 121.5ws. The Q3 contract was sold down to 123ws, where it traded a couple of times, putting Sep value around 127ws on the close. Oct/Q4 traded early in the week at -3ws with levels used at 132ws v 135ws, but since then the Q4 has been well offered so the value is now lower on both these contracts. 2022 contracts came into play this week in the form of Oct21-Sep22 strip, trading as a combo with TC14 with the TC2 leg being \$16.90/t (TC2+14 at \$17.35/t), which was down marginally on marks at the time as, so we close the week with Cal-22 valued at \$17.48/t.

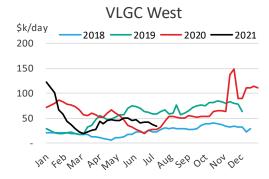
Adam Clitheroe

TC5: Lack of activity continues to put a spanner in the works for the LR1s and LR2s. 77.5ws remains our call for TC5, while once again, 75ws is our call for TC1. A quieter week for the paper as just over 500kt prints with an emphasis on the front. July starts the week at 81ws before gradually being paid up throughout the week, with the high being 84ws before a marginal sell-off sees us close the week out at 83ws. August builds on last week's steady activity, with the bulk of the trades coming here. 92.5ws on open quickly gets sold down to 90ws before it was like the phoenix from the flames, we see 94ws trade multiple times on close. September sees limited activity with an open of 101ws being sold down to 99ws before recovery of sorts as 101ws is the closing print. Q4 has a quiet week as 111.25ws trades mid-week in smalls. The Cal-22 fails to see any action this week, but with us pinning value at \$26/t, this gives us earnings of \$11075pd off Baltic parameters.

Joseph Robert McCarthy

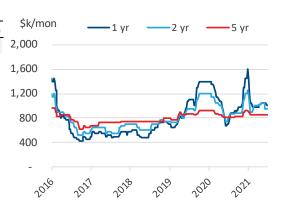
TC14: The shorter week did no favours for TC14 this week, with BITR coming off 9ws over the four pricing days to close out at 81.43ws on Friday. The back end of the curve was the focus this week. July traded down from 86.5ws to 81ws at the low and valued at 81.5 on the close. Aug traded at 79ws. Q3-21 traded throughout the day on Friday at 80ws, with a lone print at 79ws. However, last done at 80ws. Q4-21 traded at 99ws at the start of the week. The Q4-21/Q3-22 strip traded at \$17.8/t, which leaves Cal-22 valued at \$18.15/t, down from last week's value of \$18.405/t, which gives a TCE of \$1,900 a day on Baltic parameters, flat to last week.


Damian Viskovic



VLGC Spot Market

		9-Jul-21 2-Jul-21		2-Jul-21	
Cargo (k/tonnes)	ROUTE	\$/t	TCE (\$/day)	\$/t	TCE (\$/day)
44	RAS TAN / CHIBA	36.6	20,990	43.9	28,427
44	HOUSTON / FLUSHING	40.0	33,898	42.0	36,503
44	HOUSTON / CHIBA	75.1	30,479	77.7	32,400
Average			28,455		32,443


Basis round voyage, 'modern vessel'

VLGC Time Charter Assessment (\$/month)

1 Y	'r	2 Y	r	5`	Yr
TC	Δ (w/w)	TC	Δ (w/w)	TC	Δ (w/w)
1,000,000	- 25,000	950,000	-	850,000	-

LPG FFA

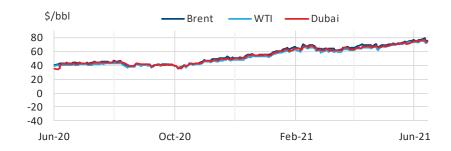
BLPG MEG → Japan 44kt

DLPG IVI	EG → Japan 44r
	\$/t
Spot	34.64
Jul-21	38.51
Aug-21	45.00
Sep-21	48.00
Oct-21	52.00
Q3-21	43.83
Q4-21	53.00
Q1-22	54.50
Q2-22	55.25
Cal-22	55.06
Cal-23	50.00

Quite a tempestuous week to report upon as we saw further erosion in the BLPG spot index, losing almost \$10/t from already low rates; whilst we saw rates initially sold off the curve retained good support, even ending up on the week in some cases. Balmo traded at \$37/t and \$38/t last, Aug traded at \$46/t initially, then 44-45-44-44.5-45, Sep traded at 48.5-47.5 before closing at \$48/t. Q4 traded at 52-50-53, and Q1 saw one print at \$52/t, trading alongside the Q4-21 at \$52/t. We saw an increased interest in the

Cal-22 contract on Friday, it was trading at \$54/t then \$55/t multiple times. We also saw interest in the Apr-Dec, trading at \$54/t and \$55/t last Friday. Cal-22 has TCEs at \$55/t yielded \$37,105 per day (\$1.13m per month) trading over where the physical TC market is currently pegged.

Sam Mitchell


Bunker Prices

		HSFO			MGO		_		VLSFO	
Port	\$/t	∆ (w/w)	1 yr avg.	\$/t	Δ (w/w)	1 yr avg.		\$/t	Δ (w/w)	1 yr avg.
Rotterdam	410.25 🖖	-2.0%	312.6	572	-2.4%	435.8		528	- 0.7%	392.2
Singapore	418.75 🖖	-1.1%	334.5	584	-2.4%	448.4		548	0.1%	419.5
Houston	398 🆖	-2.1%	316.9	630	-2.2%	466.1		530	- 0.7%	395.9
Fujairah	411.75 🖖	-1.6%	320.0	629	-2.2%	507.5		542	♠ 0.0%	415.5
Gibraltar	421.75 🖖	-2.0%	339.8	600	-2.3 %	463.7		539	0.2%	406.5
Piraeus	439.25 🖖	-1.9%	345.9	-		-		-		-
Tokyo	536 🖖	-1.6%	435.3	738	-1.9%	555.9		572	- 0.5%	446.7

Commodity Prices

	Cru	Crude						
	\$/bbl	Δ (w/w)						
Brent	75.86 🎍	-1.8%						
Dubai	74.49 🌗	-1.2%						
WTI	74.56 🎍	-1.1%						



Exchange Rates

Currency	1 US\$ =		Δ (w/w)
Aus Dollar	\$ 0.75	4	-\$0.01
British Pound	£0.73	•	£0.002
Chinese Yuan	¥6.49	•	¥0.015
Euro	€ 0.84	•	€ 0.001
Japanese Yen	¥110.07	4	-¥0.970
Korean Won	₩1,147.18	•	₩16.650
Saudi Riyal	ر.س. 3.75	•	ر.س. 0.001

Interest Rates

About us

About Braemar ACM Shipbroking

Braemar ACM Shipbroking is one of the world's largest shipbroking companies. Headquartered in London, with around 450 employees worldwide, Braemar ACM Shipbroking has broking Offices in the UK, US, Australia, China, Singapore, Greece, Switzerland, Brazil, Dubai and India. Braemar ACM Shipbroking offers broking in Tankers, Offshore, Containers, Dry Bulk, Gas, Chemicals, Sale and Purchase, Newbuilding, Dry/Wet Freight and Coal Derivatives, Ship Recycling, Research and Consultancy and Valuations. Braemar ACM Shipbroking is a member of The Baltic Exchange, Institute of Chartered Shipbrokers, the London Tanker Brokers' Panel, Worldscale Association, Intertanko, Intercargo and BIMCO.

Braemar ACM Shipbroking was formed in 2014 following the merger of two shipping services companies: Braemar Shipping Services Plc (established 1972 as Seascope) and ACM Shipping Plc (established 1982) Braemar Shipping Services plc is listed on the London Stock Exchange.

Braemar ACM Shipbroking Research

Email: research@braemar.com
Phone: UK +44 203 142 4200

Singapore: +65 6579 1088

Website: www.braemaracm.com

Disclaimer

The information contained within this report is given in good faith based on the current market situation at the time of preparing this report and as such is specific to that point only. While all reasonable care has been taken in the preparation and collation of information in this report Braemar Shipping Services Plc (and all associated and affiliated companies) does not accept any liability whatsoever for any errors of fact or opinion based on such facts.

Some industry information relating to the shipping industry can be difficult to find or establish. Some data may not be available and may need to be estimated or assessed and where such data may be limited or unavailable subjective assessment may have to be used.

No market analysis can guarantee accuracy. The usual fundamentals may not always govern the markets, for example psychology, market cycles and external events (such as acts of god or developments in future technologies) could cause markets to depart from their natural/usual course. Such external events have not been considered as part of this analysis. Historical market behaviour does not predict future market behaviour and shipping is an inherently high risk business. You should therefore consider a variety of information and potential outcomes when making decisions based on the information contained in this report.

All information provided by Braemar Shipping Services Plc is without any guarantee whatsoever. Braemar Shipping Services Plc or any of its subsidiaries or affiliates will not be liable for any consequences thereof.

This report is intended solely for the information of the email recipient account and must not be passed or divulged to any third parties whatsoever without the written permission of Braemar Shipping Services Plc. Braemar Shipping Services Plc accepts no liability to any third parties whatsoever

If permission is granted, you must disclose the full report including all disclaimers, and not selected excerpts which may be taken out of context.

Assumptions used in this report

Vessel Specs TCE 6					earnings calculation assumptions basis Baltic (Non Eco) / Eco							
				Spe	Speed Bunker Consumption					Port	Port Days	
Uncoated	Typical DWT ('000)	Typical capacity ('000 cbm)	Avg exist. fleet > 15 yrs ldt	Ballast (kts)	Laden (kts)	Ballast (t/d)	Laden (t/d)	Load (t/d)	Dsch (t/d)	Wait (t/d)	Load (d)	Dsch (d)
VLCC	>200	n/a	a 42,500	12.5/ 12	13/ 13	53/ 36	70/ 55	20/20	110/ 70	10/10	2/2.5	2/2.5
Suezmax	124.5 - 200	n/a	a 23,000	12.5/ 13	13/ 13	44/30	53/40	12/ 7.5	68/40	10/ 10	2/2.5	2/2.5
Aframax	84.5 - 124.5	n/a	a 17,000	12.5/ 13	13/ 13	36/28	43/ 33	10/6	55/30	5/8	2/2.5	2/2.5
Panamax	53.5 - 84.5	60 - 90	13,500	12.5/ 13	13/ 13	44/30	53/40	12/7.5	68/40	10/ 10	2/2.5	2/2.5
Coated												
LR2	84.5 - 124.9		17,000	12.5/ 13	13/ 13	36/28	43/ 33	10/6	42.5/30	5/8	2/2.5	2/2.5
LR1	53.5 - 84.5	60 - 90	13,500	12.5/ 13	13/ 13	28/ 25	33/ <mark>28</mark>	5/ <mark>5</mark>	32/17.5	5/ 5	2/2.5	2/2.5
MR	41 - 56.5	46 - 60	10,000	12.5/13	13/ 13	22.5/19	28/ 22	5/3.5	25/ 12	5/5	2/2.5	2/2.5
Handy	25 - 41	29 - 46	9,000	12.5/13	13/13	22.5	28	5	25	5	2/2.5	2/2.5